Representation Stability, Configuration Spaces, and Deligne–Mumford Compactifications

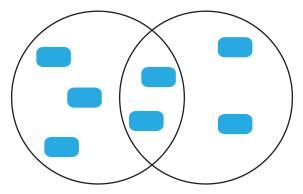
Phil Tosteson

Thesis Defense, April 16 2019

Intro to Topology

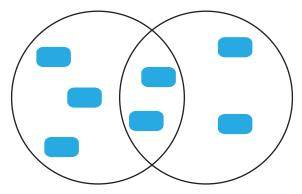
Inclusion-Exclusion

How many blue blobs are there?



Inclusion-Exclusion

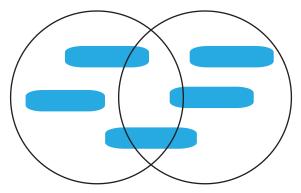
How many blue blobs are there?



There are 5 + 4 - 2, so 7 in total

With Overlaps

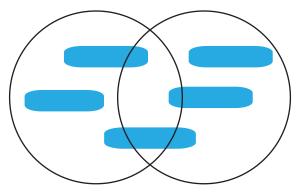
Does inclusion exclusion still work when there are overlaps?



We have 4 + 4 - 3

With Overlaps

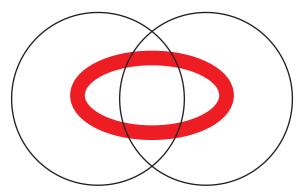
Does inclusion exclusion still work when there are overlaps?



We have 4 + 4 - 3 = 5, so yes!

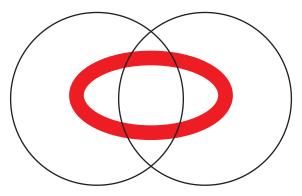
Or does it?

We have 1 + 1 - 2 = 0. What is going on?



Or does it?

We have 1 + 1 - 2 = 0. What is going on?



To a topologist, this makes sense because 0 is the **Euler Characteristic** of the annulus.

Euler Characteristic

The **Euler Characteristic** was the first ever topological invariant. It is a topological version of counting.

- It is a number \(\chi(A)\), assigned to any shape (topological space) A
- You can compute it by breaking A up into pieces and using inclusion exclusion.

Euler Characteristic

The **Euler Characteristic** was the first ever topological invariant. It is a topological version of counting.

- It is a number \(\chi(A)\), assigned to any shape (topological space) A
- You can compute it by breaking A up into pieces and using inclusion exclusion.
- ▶ No matter how you break up A, you get the same answer!

Euler Characteristic

The **Euler Characteristic** was the first ever topological invariant. It is a topological version of counting.

- It is a number \(\chi(A)\), assigned to any shape (topological space) A
- You can compute it by breaking A up into pieces and using inclusion exclusion.
- ▶ No matter how you break up A, you get the same answer!
- It only depends on the topology of A, not on how "big" or "sharp" A is.

Euler Characteristic of the 2 sphere

This is the 2-sphere, S^2

Euler Characteristic of the 2 sphere

This is the 2-sphere, S^2

To compute $\chi(S^2)$, we break it up into the top piece and the bottom piece.

So we get $\chi(S^2) = 1 + 1 - 0 = 2$.

Homology

The homology of a space X is a **refinement** of its Euler characteristic, invented by Poincaré

- There is a vector space $H_i(X)$ for every $i \in \mathbb{N}$.
- ► Recording dimensions gives us a sequence of betti numbers {dim H_i(X)}_{i∈ℕ}.
- We have

$$\chi(X) = \sum_{i} (-1)^{i} \dim H_{i}(X)$$

► This talk will be about computing the vector spaces H_i(X), for certain topological spaces.

Configuration Spaces

Configuration Space

- We let X be a Hausdorff topological space
- The ordered configuration space of *n* points in *X* is

$$\operatorname{Conf}_n(X) = \{(x_i) \in X^n \mid x_i \neq x_j \text{ for } i \neq j\}$$

Configuration Space

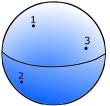
- We let X be a Hausdorff topological space
- The ordered configuration space of *n* points in *X* is

$$\operatorname{Conf}_n(X) = \{(x_i) \in X^n \mid x_i \neq x_j \text{ for } i \neq j\}$$

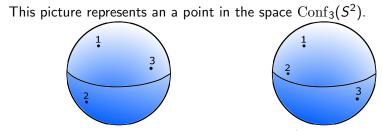
We visualize configuration space as n labelled points moving around in X, where the points are not allowed to collide.

Configuration Space of a Sphere

This picture represents an a point in the space $\text{Conf}_3(S^2)$.

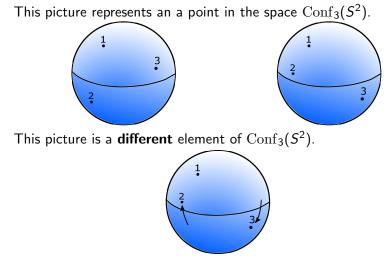


Configuration Space of a Sphere



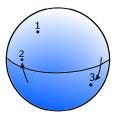
This picture is a **different** element of $\text{Conf}_3(S^2)$.

Configuration Space of a Sphere



Here is a path from the first point to the second point.

Configuration Space of a Sphere



Since there are 3 points we can vary, and 2 degrees of freedom for each point, the space $\text{Conf}_3(S^2)$ is $2 \cdot 3 = 6$ dimensional.

The topology of configuration spaces shows up in several places

• The space $Conf_n \mathbb{R}^d$ is important for studying *d*-fold loop spaces.

- ► The space Conf_nℝ^d is important for studying *d*-fold loop spaces.
- ► For framed manifolds, the mapping space Map(M, S^d) is approximated by Conf_nM/S_n

- ► The space Conf_nℝ^d is important for studying *d*-fold loop spaces.
- ► For framed manifolds, the mapping space Map(M, S^d) is approximated by Conf_nM/S_n
- ► The space Conf_nℝ² is a classifying space for the pure braid group: it is responsible for "braided anyons" in physics.

- ► The space Conf_nℝ^d is important for studying *d*-fold loop spaces.
- ► For framed manifolds, the mapping space Map(M, S^d) is approximated by Conf_nM/S_n
- ► The space Conf_nℝ² is a classifying space for the pure braid group: it is responsible for "braided anyons" in physics.
- An embedding $X \hookrightarrow Y$ induces a map on configuration spaces $\operatorname{Conf}_n X \to \operatorname{Conf}_n Y$. Can use this to study **knots**! $S^1 \hookrightarrow \mathbb{R}^3$. (In general, we have embedding calculus).

- ► The space Conf_nℝ^d is important for studying *d*-fold loop spaces.
- ► For framed manifolds, the mapping space Map(M, S^d) is approximated by Conf_nM/S_n
- ► The space Conf_nℝ² is a classifying space for the pure braid group: it is responsible for "braided anyons" in physics.
- An embedding $X \hookrightarrow Y$ induces a map on configuration spaces $\operatorname{Conf}_n X \to \operatorname{Conf}_n Y$. Can use this to study **knots**! $S^1 \hookrightarrow \mathbb{R}^3$. (In general, we have embedding calculus).
- Topological complexity and motion planning.

Question:

What is the (co)homology of $Conf_n(X)$? As an S_n representation?

- Answer should involve the cohomology of X
- ► But X → Conf_n(X) does not preserve homotopy equivalences- this suggests we need more!
- When n >> 0, we hope that Hⁱ(Conf_n(X)) admits a uniform description.

Representation Stability

One **strategy** for studying sequences of group representations $V_n, n \in \mathbb{N}$ is to extend them to an action of a category.

Representation Stability

One **strategy** for studying sequences of group representations $V_n, n \in \mathbb{N}$ is to extend them to an action of a category.

For example, this is the category \mathbf{FI} , of finite sets and injections.

$$\emptyset \to \{1\} \rightrightarrows \{1,2\} \rightrightarrows^6 \{1,2,3\} \rightrightarrows^{24} \{1,2,3,4\} \rightrightarrows^{120} \{1,2,3,4,5\} \rightrightarrows \cdots$$

Representation Stability

One **strategy** for studying sequences of group representations $V_n, n \in \mathbb{N}$ is to extend them to an action of a category.

For example, this is the category **FI**, of finite sets and injections.

$$\emptyset \to \{1\} \rightrightarrows \{1,2\} \rightrightarrows^6 \{1,2,3\} \rightrightarrows^{24} \{1,2,3,4\} \rightrightarrows^{120} \{1,2,3,4,5\} \rightrightarrows \cdots$$

An **FI** module is a functor from **FI** to the category of abelian groups.

$$M_0
ightarrow M_1
ightarrow M_2
ightarrow ^6 M_3
ightarrow ^{24} M_4
ightarrow ^{120} M_5
ightarrow \cdots$$

Each M_n is an S_n representation. These representations are related by transition maps.

An **FI** module is **finitely generated** if there is a finite list of elements $x_i \in M_{n_i}$, such that any $m \in M_n$ has the form

$$m=\sum_i a_i f_i x_i,$$

for $a_i \in \mathbb{Z}$ and transition maps $f_i \in \mathbf{FI}$.

An **FI** module is **finitely generated** if there is a finite list of elements $x_i \in M_{n_i}$, such that any $m \in M_n$ has the form

$$m=\sum_i a_i f_i x_i,$$

for $a_i \in \mathbb{Z}$ and transition maps $f_i \in \mathbf{FI}$.

 Introduced by Church–Ellenberg–Farb to explain representation stability in topology

An **FI** module is **finitely generated** if there is a finite list of elements $x_i \in M_{n_i}$, such that any $m \in M_n$ has the form

$$m=\sum_i a_i f_i x_i,$$

for $a_i \in \mathbb{Z}$ and transition maps $f_i \in \mathbf{FI}$.

- Introduced by Church–Ellenberg–Farb to explain representation stability in topology
- Sam–Snowden structure theory in characteristic 0.
 - Analogous to classification of finitely generated abelian groups.
 - ► *M* breaks up into torsion and "stable" pieces, and the these pieces are classified.

An **FI** module is **finitely generated** if there is a finite list of elements $x_i \in M_{n_i}$, such that any $m \in M_n$ has the form

$$m=\sum_i a_i f_i x_i,$$

for $a_i \in \mathbb{Z}$ and transition maps $f_i \in \mathbf{FI}$.

- Introduced by Church–Ellenberg–Farb to explain representation stability in topology
- Sam–Snowden structure theory in characteristic 0.
 - Analogous to classification of finitely generated abelian groups.
 - ► *M* breaks up into torsion and "stable" pieces, and the these pieces are classified.
- Integral / char p work of Nagpal and others.

Consequences of finite generation

If M is a finitely generated **FI** module, then

• The function $n \mapsto \dim M_n$ agrees with a polynomial for $n \gg 0$

Consequences of finite generation

If M is a finitely generated **FI** module, then

- The function $n \mapsto \dim M_n$ agrees with a polynomial for $n \gg 0$
- The groups M_n/S_n stabilize

Consequences of finite generation

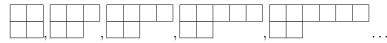
If M is a finitely generated **FI** module, then

- The function $n \mapsto \dim M_n$ agrees with a polynomial for $n \gg 0$
- The groups M_n/S_n stabilize
- ► The S_n representation eventually agrees with a finite direct sum of representations with "growing top rows"

Consequences of finite generation

If M is a finitely generated **FI** module, then

- The function $n \mapsto \dim M_n$ agrees with a polynomial for $n \gg 0$
- The groups M_n/S_n stabilize
- ► The S_n representation eventually agrees with a finite direct sum of representations with "growing top rows"



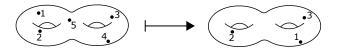
► We have that the symmetric function corresponding to *M* is a finite sum of the form

$$\sum_{\lambda} \pm s_{\lambda} \cdot \left(\sum_{n=0}^{\infty} h_n \right)$$

FI action on configuration space

An injection $f : [n] \hookrightarrow [m]$ gives a map $\operatorname{Conf}_n X \leftarrow \operatorname{Conf}_m X$, by forgetting and relabelling points.

For example, the injection [3] \rightarrow [5], given by $1\mapsto 4,2\mapsto 2,3\mapsto 3$ acts by



FI action on configuration space

An injection $f : [n] \hookrightarrow [m]$ gives a map $\operatorname{Conf}_n X \leftarrow \operatorname{Conf}_m X$, by forgetting and relabelling points.

For example, the injection [3] \rightarrow [5], given by $1\mapsto 4,2\mapsto 2,3\mapsto 3$ acts by



This means that $H^i(Conf_n(X))$ is an **FI** module.

Representation stability for manifolds

Building on the work of Church, Church-Ellenberg-Farb showed

Theorem (CEF)

Let *M* be a connected manifold of dimension ≥ 2 . Then for every *i*, $H^i(\operatorname{Conf}_n M, \mathbb{Q})$ is a finitely generated **FI** module.

This fails for \mathbb{R}^1 !

Intro to Topology Configuration Spaces Moduli Spaces of Curves

Representation Stability for Non-Manifolds

We say that a point $p \in X$ is a **roadblock** if for $U \ni p$ a contractible neighborhood, U - p is disconnected.

- Every point of a graph G is a roadblock
- $G imes \mathbb{R}^1$ has no roadblock points
- A wedge of two spaces has a roadblock point at the wedge
- Two spheres glued along an edge have no roadblocks

We say that a point $p \in X$ is a **roadblock** if for $U \ni p$ a contractible neighborhood, U - p is disconnected.

- Every point of a graph G is a roadblock
- $G \times \mathbb{R}^1$ has no roadblock points
- A wedge of two spaces has a roadblock point at the wedge
- Two spheres glued along an edge have no roadblocks

Theorem (T.)

Let X be a finite connected CW complex or algebraic variety. Let k be a field. If X has **no roadblocks** then

 $n\mapsto H^i(\mathrm{Conf}_n(X),k)$

is a finitely generated **FI** module.

We say that a point $p \in X$ is a **roadblock** if for $U \ni p$ a contractible neighborhood, U - p is disconnected.

- Every point of a graph G is a roadblock
- $G \times \mathbb{R}^1$ has no roadblock points
- A wedge of two spaces has a roadblock point at the wedge
- Two spheres glued along an edge have no roadblocks

Theorem (T.)

Let X be a finite connected CW complex or algebraic variety. Let k be a field. If X has **no roadblocks** then

 $n\mapsto H^i(\mathrm{Conf}_n(X),k)$

is a finitely generated **FI** module.

Extends to reasonable locally contractible closed subsets of \mathbb{R}^n .

Theorem (T.)

Let X be a finite connected CW complex or algebraic variety. If X has **no roadblocks** then

 $n\mapsto H^i(\operatorname{Conf}_n(X),k)$

is a finitely generated **FI** module.

To prove this, need to extend the computational methods for computing $H^i(\text{Conf}_n X)$ to non-manifolds.

Theorem (T.)

Let X be a finite connected CW complex or algebraic variety. If X has **no roadblocks** then

 $n\mapsto H^i(\operatorname{Conf}_n(X),k)$

is a finitely generated **FI** module.

To prove this, need to extend the computational methods for computing $H^i(\text{Conf}_n X)$ to non-manifolds.

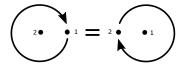
What are these methods?

We can represent homology classes in $Conf_n \mathbb{R}^2$ graphically.

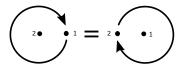
This is a class in $H_1(\operatorname{Conf}_2(\mathbb{R}^2))$, the fundamental class of the submanifold spanned by the first point winding around the second.

We can represent homology classes in $Conf_n \mathbb{R}^2$ graphically.

This is a class in $H_1(\operatorname{Conf}_2(\mathbb{R}^2))$, the fundamental class of the submanifold spanned by the first point winding around the second.



These two classes are equal

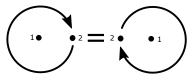


We can represent the class by this tree

How does \mathbf{S}_2 act on this class?

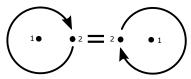
How does \mathbf{S}_2 act on this class?

The switched class is

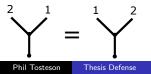


How does \mathbf{S}_2 act on this class?

The switched class is



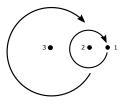
They are the same! In terms of trees, we represent this by



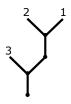
Intro to Topology Configuration Spaces Moduli Spaces of Curves

Homology of $\operatorname{Conf}_n \mathbb{R}^2$

The class in $H_2(\operatorname{Conf}_3(\mathbb{R}^2))$



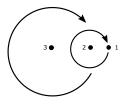
is represented by



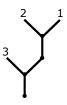
Intro to Topology Configuration Spaces Moduli Spaces of Curves

Homology of $\operatorname{Conf}_n \mathbb{R}^2$

The class in $H_2(\operatorname{Conf}_3(\mathbb{R}^2))$



is represented by



We will write (3(21)) for this class.

Using this notation, there is a relation in $H_2(\operatorname{Conf}_3(\mathbb{R}^2))$.

(3(21)) + (1(32)) + (2(13)) = 0

Using this notation, there is a relation in $H_2(\operatorname{Conf}_3(\mathbb{R}^2))$.

$$(3(21)) + (1(32)) + (2(13)) = 0$$

This is the Jacobi relation!

Using this notation, there is a relation in $H_2(\text{Conf}_3(\mathbb{R}^2))$.

$$(3(21)) + (1(32)) + (2(13)) = 0$$

This is the Jacobi relation!

Using it, we can show that $H_2(\operatorname{Conf}_n \mathbb{R}^2)$ is the **S**₃ representation

Using this notation, there is a relation in $H_2(\operatorname{Conf}_3(\mathbb{R}^2))$.

$$(3(21)) + (1(32)) + (2(13)) = 0$$

This is the Jacobi relation!

Using it, we can show that $H_2(\operatorname{Conf}_n \mathbb{R}^2)$ is the **S**₃ representation

 $H_1(\operatorname{Conf}_3\mathbb{R}^2)$ is spanned by $(12)\otimes 3, (23)\otimes 1$ and $(13)\otimes 2$.

The ${\rm Lie}$ representations are generated by trees/bracketings, modulo Lie algebra relations

As a vector space

$$Lie(2) = \mathbb{Z}\{[12], [21]\}/([12] = -[21])$$

The ${\rm Lie}$ representations are generated by trees/bracketings, modulo Lie algebra relations

As a vector space

$$Lie(2) = \mathbb{Z}\{[12], [21]\}/([12] = -[21])$$

• As an S_3 representation Lie(3) is

 $\frac{\mathbb{Z} \boldsymbol{\mathsf{S}}_{3}\{[[12]3], [1[23]]\}}{[[12]3] = -[[21]3], \ [[12]3] = -[3[12]], \ [1[23]] + [3[12]] + [2[31]] = 0}.$

The ${\rm Lie}$ representations are generated by trees/bracketings, modulo Lie algebra relations

As a vector space

$$Lie(2) = \mathbb{Z}\{[12], [21]\}/([12] = -[21])$$

• As an S_3 representation Lie(3) is

 $\frac{\mathbb{Z}\mathbf{S}_{3}\{[[12]3], [1[23]]\}}{[[12]3] = -[[21]3], \ [[12]3] = -[3[12]], \ [1[23]] + [3[12]] + [2[31]] = 0}.$

• As an S_4 representation, Lie(4) is

 $\frac{\mathbb{Z} \boldsymbol{\mathsf{S}}_4\{[[12]3]4], [[1[23]]4], [[12][34]], [1[[23]4]], [1[2[34]]]\}}{[[12]3]4]] = -[[21]3]4]], \ldots, [[1[23]]4] + [[3[12]]4] + [[2[31]]4] = 0}.$

The ${\rm Lie}$ representations are generated by trees/bracketings, modulo Lie algebra relations

As a vector space

$$Lie(2) = \mathbb{Z}\{[12], [21]\}/([12] = -[21])$$

As an S₃ representation Lie(3) is

 $\frac{\mathbb{Z}\mathbf{S}_{3}\{[[12]3], [1[23]]\}}{[[12]3] = -[[21]3], [[12]3] = -[3[12]], [1[23]] + [3[12]] + [2[31]] = 0}.$

• As an S_4 representation, Lie(4) is

 $\frac{\mathbb{Z} \boldsymbol{\mathsf{S}}_4\{[[12]3]4], [[1[23]]4], [[12][34]], [1[[23]4]], [1[2[34]]]\}}{[[12]3]4]] = -[[21]3]4]], \ldots, [[1[23]]4] + [[3[12]]4] + [[2[31]]4] = 0}.$

In general Lie(n) is an (n-1)! dimensional S_n representation. There are combinatorial formulas for its character.

Arnold, Cohen computations

Theorem

The S_n representation $H_{nd-1}(\text{Conf}_n(\mathbb{R}^d))$ is $\text{sign}^{\otimes d-1}\text{Lie}(n)$, In a sense, these are the "irreducible classes" – the ones which involve all of the points rotating about each other.

Arnold, Cohen computations

Theorem

The S_n representation $H_{nd-1}(\text{Conf}_n(\mathbb{R}^d))$ is $\text{sign}^{\otimes d-1}\text{Lie}(n)$, In a sense, these are the "irreducible classes" – the ones which involve all of the points rotating about each other.

Theorem

Write Σ^d Lie for $\bigoplus_n \operatorname{sign}^{\otimes d-1}$ Lie(n)[d-1]. Write Com for the sum of S_n representations $\bigoplus_n \operatorname{triv}$. Then we have

$$\oplus_n H_{\bullet}(\operatorname{Conf}_n \mathbb{R}^d) = \operatorname{Com} \circ \Sigma^d \operatorname{Lie}.$$

In other words, it is a free non-unital TCA.

This implies a plethystic formula for the symmetric function that records the cohomology of $\text{Conf}_n \mathbb{R}^d$ as an \mathbf{S}_n representation.

Intro to Topology Configuration Spaces Moduli Spaces of Curves

The Totaro, Cohen, Kriz model

Every manifold M is locally isomorphic to \mathbb{R}^n . So it is reasonable that we can **globalize** this statement (at least to first approximation).

The Totaro, Cohen, Kriz model

Every manifold M is locally isomorphic to \mathbb{R}^n . So it is reasonable that we can **globalize** this statement (at least to first approximation).

Theorem (Totaro)

Let M be a d-dimensional manifold. Let k be a field. There is a spectral sequence

$$\bigoplus_{p+q} E_2^{p,q} = \operatorname{Com} \circ H^*(M,k) \circ \Sigma^{-d} \operatorname{Lie}$$

converging to the cohomology of configuration space $\bigoplus_n H^{\bullet}(\operatorname{Conf}_n \mathbb{R}^2).$

The Totaro, Cohen, Kriz model

Every manifold M is locally isomorphic to \mathbb{R}^n . So it is reasonable that we can **globalize** this statement (at least to first approximation).

Theorem (Totaro)

Let M be a d-dimensional manifold. Let k be a field. There is a spectral sequence

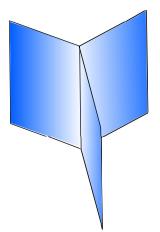
$$\bigoplus_{p+q} E_2^{p,q} = \operatorname{Com} \circ H^*(M,k) \circ \Sigma^{-d} \operatorname{Lie}$$

converging to the cohomology of configuration space $\bigoplus_n H^{\bullet}(\operatorname{Conf}_n \mathbb{R}^2).$

Can use this to compute Euler characteristics / prove representation stability.

Non-Manifolds

What is the local structure of points moving around in $Y \times [0, 1]$?



Let P(n) be the **poset of set partitions**, ordered by refinement. For $p \in P(n)$, we define the closed subset of X^n :

 $Z_p := \{(x_i) \in X^n | x_i = x_j \text{ if } i, j \text{ are in the same block of } p\} = X^{\#p}.$

Let P(n) be the **poset of set partitions**, ordered by refinement. For $p \in P(n)$, we define the closed subset of X^n :

 $Z_p := \{(x_i) \in X^n | x_i = x_j \text{ if } i, j \text{ are in the same block of } p\} = X^{\#p}.$

This is a **stratification** of X^n by P(n).

Let P(n) be the **poset of set partitions**, ordered by refinement. For $p \in P(n)$, we define the closed subset of X^n :

 $Z_p := \{(x_i) \in X^n | x_i = x_j \text{ if } i, j \text{ are in the same block of } p\} = X^{\#p}.$

This is a **stratification** of X^n by P(n).

When $p \leq q$ there are maps on cochains

$$C^*(X^n,X^n-Z_p) \rightarrow C^*(X^n,X^n-Z_q)$$

This forms a chain complex of P(n). representations.

Let P(n) be the **poset of set partitions**, ordered by refinement. For $p \in P(n)$, we define the closed subset of X^n :

 $Z_p := \{(x_i) \in X^n | x_i = x_j \text{ if } i, j \text{ are in the same block of } p\} = X^{\#p}.$

This is a **stratification** of X^n by P(n).

When $p \leq q$ there are maps on cochains

$$C^*(X^n,X^n-Z_p) \rightarrow C^*(X^n,X^n-Z_q)$$

This forms a chain complex of P(n). representations.

Theorem (T.)

From this chain complex of P(n) representations, we can build a chain complex that computes $H^*(Conf_n(X))$.

By **filtering** this construction, we obtain a spectral sequence. The Lie representations appear because they are the homology groups of P(n).

Theorem (T.)

Let X be any Hausdorff topological space. Let k be a field. There is a spectral sequence

$$\bigoplus_{p+q} E_1^{p,q} = \operatorname{Com}\left(\bigoplus_n H^*(X^n, X^n - \Delta X, k) \otimes \operatorname{sgn} \operatorname{Lie}(n)[n-1]\right),$$

converging to the (sheaf) cohomology of configuration space.

By **filtering** this construction, we obtain a spectral sequence. The Lie representations appear because they are the homology groups of P(n).

Theorem (T.)

Let X be any Hausdorff topological space. Let k be a field. There is a spectral sequence

$$\bigoplus_{p+q} E_1^{p,q} = \operatorname{Com}\left(\bigoplus_n H^*(X^n, X^n - \Delta X, k) \otimes \operatorname{sgn} \operatorname{Lie}(n)[n-1]\right),$$

converging to the (sheaf) cohomology of configuration space. For **representation stability**, need $H^i(X^n, X^n - \Delta X)$ to vanish in the range $0 \le i \le 2n - c$.

By **filtering** this construction, we obtain a spectral sequence. The Lie representations appear because they are the homology groups of P(n).

Theorem (T.)

Let X be any Hausdorff topological space. Let k be a field. There is a spectral sequence

$$\bigoplus_{p+q} E_1^{p,q} = \operatorname{Com}\left(\bigoplus_n H^*(X^n, X^n - \Delta X, k) \otimes \operatorname{sgn} \operatorname{Lie}(n)[n-1]\right),$$

converging to the (sheaf) cohomology of configuration space.

For **representation stability**, need $H^i(X^n, X^n - \Delta X)$ to vanish in the range $0 \le i \le 2n - c$. Can reinterpret this group as $H^i(\omega_X^{\otimes n-1})$, where ω_X is a sheaf of

chain complexes called the **dualizing complex**.

By **filtering** this construction, we obtain a spectral sequence. The Lie representations appear because they are the homology groups of P(n).

Theorem (T.)

Let X be any Hausdorff topological space. Let k be a field. There is a spectral sequence

$$\bigoplus_{p+q} E_1^{p,q} = \operatorname{Com}\left(\bigoplus_n H^*(X^n, X^n - \Delta X, k) \otimes \operatorname{sgn} \operatorname{Lie}(n)[n-1]\right),$$

converging to the (sheaf) cohomology of configuration space.

For **representation stability**, need $H^i(X^n, X^n - \Delta X)$ to vanish in the range $0 \le i \le 2n - c$.

Can reinterpret this group as $H^i(\omega_X^{\otimes n-1})$, where ω_X is a sheaf of chain complexes called the **dualizing complex**. If X has no

Moduli Spaces of Curves

Moduli Space of Curves

 M_g is the moduli space of complex curves of genus g.

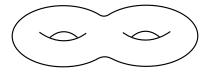
$$M_g = \frac{\{C \text{ smooth complex genus } g \text{ curve}\}}{C \sim C' \text{ if } C \text{ and } C' \text{ are isomorphic}}$$

Moduli Space of Curves

 M_g is the moduli space of complex curves of genus g.

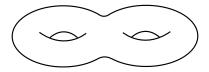
$$M_g = \frac{\{C \text{ smooth complex genus } g \text{ curve}\}}{C \sim C' \text{ if } C \text{ and } C' \text{ are isomorphic}}$$

Thus a point in M_2 is a genus 2 curve with a complex structure.



Moduli Space of Curves

It is difficult to visualize complex structures. We can attempt to do it by associating a **hyperbolic metric** to each complex structure (our drawings are not accurate).



As the complex structure on C changes, the metric deforms, and we trace out a path in M_g .

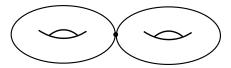
Compactification by Nodal Curves

As the neck of the surface stretches longer and longer, we obtain a sequence of curves with no limiting smooth curve.

Compactification by Nodal Curves

As the neck of the surface stretches longer and longer, we obtain a sequence of curves with no limiting smooth curve.

To compactify M_g , we can consider a larger space \overline{M}_g that has nodal curves.



Moduli Spaces of Marked Curves

 $M_{g,n}$ is the moduli space of complex curves of genus g and n marked points.

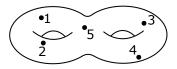
$$M_{g,n} = \frac{\{C \text{ complex genus } g \text{ curve}, p_1, \dots, p_n \in C\}}{\{\text{ isomorphisms } C \simeq C' \text{ preserving } p_1, \dots, p_n\}}$$

Moduli Spaces of Marked Curves

 $M_{g,n}$ is the moduli space of complex curves of genus g and n marked points.

$$M_{g,n} = \frac{\{C \text{ complex genus } g \text{ curve}, p_1, \dots, p_n \in C\}}{\{\text{ isomorphisms } C \simeq C' \text{ preserving } p_1, \dots, p_n\}}$$

This is a point in $M_{2,5}$.



Deligne–Mumford Compactification

A **stable marked curve** is a compact, irreducible, one dimensional algebraic variety C, together with a collection of marked points $p_i \in C$ that satisfy

Deligne–Mumford Compactification

A **stable marked curve** is a compact, irreducible, one dimensional algebraic variety C, together with a collection of marked points $p_i \in C$ that satisfy

► Every singular point c ∈ C is a double point, and every marked point p_i is non-singular.

Deligne-Mumford Compactification

A **stable marked curve** is a compact, irreducible, one dimensional algebraic variety C, together with a collection of marked points $p_i \in C$ that satisfy

- ► Every singular point c ∈ C is a double point, and every marked point p_i is non-singular.
- ► Each genus 0 irreducible component contains ≥ 3 marked or double points.
- ► Each genus 1 irreducible component contains ≥ 1 marked or double points.

Deligne–Mumford Compactification

A **stable marked curve** is a compact, irreducible, one dimensional algebraic variety C, together with a collection of marked points $p_i \in C$ that satisfy

- ► Every singular point c ∈ C is a double point, and every marked point p_i is non-singular.
- ► Each genus 0 irreducible component contains ≥ 3 marked or double points.
- ► Each genus 1 irreducible component contains ≥ 1 marked or double points.

The last conditions guarantee that C has finitely many automorphisms that preserve the markings.

Deligne–Mumford Compactification

A **stable marked curve** is a proper, irreducible, one dimensional algebraic variety C, together with a collection of marked points $p_i \in C$ that satisfy

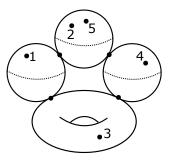
- ► Every singular point c ∈ C is a double point, and every marked point p_i is non-singular.
- Each genus 0 irreducible component contains
 ² 3 marked or double points.
- ► Each genus 1 irreducible component contains ≥ 1 marked or double points.

 $\overline{M}_{g,n}$ is the moduli space of stable marked complex curves.

$$\overline{M}_{g,n} = \frac{\{C, p_1, \dots, p_n | C \text{ is a stable marked curve of genus } g\}}{(C, p_i) \sim (D, q_i) \text{ if } C, D \text{ are isomorphic as marked curves}}$$

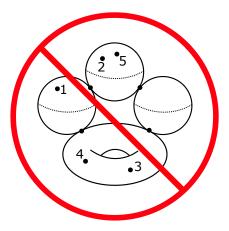
Deligne–Mumford Compactifications

The following nodal curve is stable, and so defines an element of $\overline{M}_{2,5}$



Deligne–Mumford Compactifications

This nodal curve is not stable, because one of the genus 0 components has only 2 special points



Why $M_{g,n}$ and $\overline{M}_{g,n}$?

Here are some reasons to study the homology of $M_{g,n}$ and $\overline{M}_{g,n}$

- Classes in Hⁱ(M_{g,n}) are characteristic classes for families of smooth marked curves.
- ► The compactification M_{g,n} has an intersection theory, related to 2-dimensional gravity.
- ► Classes in $H_i(\overline{M}_{g,n})$ yield "Gromov–Witten type" invariants

Why $M_{g,n}$ and $\overline{M}_{g,n}$?

Here are some reasons to study the homology of $M_{g,n}$ and $\overline{M}_{g,n}$

- Classes in Hⁱ(M_{g,n}) are characteristic classes for families of smooth marked curves.
- ► The compactification M_{g,n} has an intersection theory, related to 2-dimensional gravity.

► Classes in $H_i(\overline{M}_{g,n})$ yield "Gromov–Witten type" invariants The homology is well understood for $g \gg n, i$. Little is known about the range g > i.

Representation Stability for $M_{g,n}$

Theorem (Jiménez Rolland)

Fix i and g. The cohomology $H^i(M_{g,n}, \mathbb{Q})$ carries the strucutre of a finitely generated **FI** module.

In particular, this implies that the function $n \mapsto \dim H^i(M_{g,n})$ agrees with a polynomial for $n \gg 0$.

Homology of $\overline{M}_{0,n}$

The (co)homology of $\overline{M}_{0,n}$ is completely known. It was first computed by Keel.

Theorem (Keel)

The vector space $H^2(\overline{M}_{0,n})$ has dimension $2^{n-1} - \frac{n^2 - n + 2}{2}$.

Homology of $\overline{M}_{0,n}$

The (co)homology of $\overline{M}_{0,n}$ is completely known. It was first computed by Keel.

Theorem (Keel)

The vector space $H^2(\overline{M}_{0,n})$ has dimension $2^{n-1} - \frac{n^2 - n + 2}{2}$.

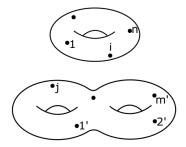
Thus $H^2(\overline{M}_{0,n})$ cannot be a finitely generated **FI** module.

A **different** algebraic structure is required to study $H_i(\overline{M}_{g,n})$.

An algebraic structure: Gluing maps

Let $i \in [n] = \{1, \dots, n\}$ and $j \in [m] = \{1', \dots, m'\}$. There is a gluing map

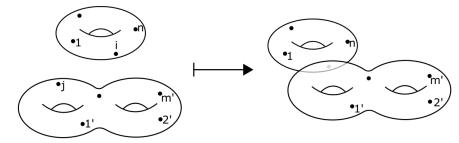
$$\operatorname{glue}_{i,j}:\overline{M}_{g,n}\times\overline{M}_{g,m}\to\overline{M}_{g,n+m-2}$$



An algebraic structure: Gluing maps

Let $i \in [n] = \{1, \dots, n\}$ and $j \in [m] = \{1', \dots, m'\}$. There is a gluing map

$$\operatorname{glue}_{i,j}: \overline{M}_{g,n} \times \overline{M}_{h,m} \to \overline{M}_{g+h,n+m-2}$$



$\textbf{FS}^{\mathrm{op}}$ modules

FS is the category of finite sets and surjections.

$$\emptyset \quad \{1\} \leftarrow \{1,2\} \rightleftarrows^6 \{1,2,3\} \rightleftarrows^{36} \{1,2,3,4\} \rightleftarrows^{240} \{1,2,3,4,5\} \rightleftarrows \cdots$$

$\textbf{FS}^{\mathrm{op}}$ modules

FS is the category of finite sets and surjections.

$$\emptyset \quad \{1\} \leftarrow \{1,2\} \rightleftharpoons^6 \{1,2,3\} \rightleftharpoons^{36} \{1,2,3,4\} \rightleftharpoons^{240} \{1,2,3,4,5\} \rightleftharpoons \cdots$$

An **FS**^{op} module is a **contravariant functor** from **FS** to the category of abelian groups.

$$M_0 \quad M_1 \rightarrow M_2 \stackrel{\Rightarrow}{\rightrightarrows} {}^6 M_3 \stackrel{\Rightarrow}{\rightrightarrows} {}^{36} M_4 \stackrel{\Rightarrow}{\rightrightarrows} {}^{240} M_5 \stackrel{\Rightarrow}{\rightrightarrows} \cdots$$

$\textbf{FS}^{\mathrm{op}}$ modules

FS is the category of finite sets and surjections.

$$\emptyset \quad \{1\} \leftarrow \{1,2\} \rightleftharpoons^6 \{1,2,3\} \rightleftharpoons^{36} \{1,2,3,4\} \rightleftharpoons^{240} \{1,2,3,4,5\} \rightleftharpoons \cdots$$

An **FS**^{op} module is a **contravariant functor** from **FS** to the category of abelian groups.

$$M_0 \quad M_1 \to M_2 \rightrightarrows^6 M_3 \rightrightarrows^{36} M_4 \rightrightarrows^{240} M_5 \rightrightarrows \cdots$$

 FS^{op} modules are a different enhancement of sequences of S_n representations than FI modules.

They are less well understood: notice that FS(n, k) grows exponentially $O(k^n)$, whereas FI(k, n) only grows polynomially $O(n^k)$.

An **FS**^{op} module structure on $H_i(\overline{M}_{g,n})$

The category \mathbf{FS}^{op} is generated by permutations $\sigma \in \mathbf{S}_n$, and surjections $[n + 1] \twoheadrightarrow [n]$.

We already know how permutations should act

An **FS**^{op} module structure on $H_i(\overline{M}_{g,n})$

The category \mathbf{FS}^{op} is generated by permutations $\sigma \in \mathbf{S}_n$, and surjections $[n + 1] \twoheadrightarrow [n]$.

- We already know how permutations should act
- ► To the surjection [4] → [3]

we associate a map $f:\overline{M}_{g,3}\to\overline{M}_{g,4}$:

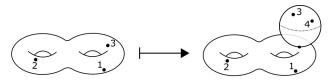


An **FS**^{op} module structure on $H_i(\overline{M}_{g,n})$

The category FS^{op} is generated by permutations $\sigma \in S_n$, and surjections $[n + 1] \twoheadrightarrow [n]$.

- We already know how permutations should act
- ► To the surjection [4] → [3]

we associate a map $f:\overline{M}_{g,3}\to\overline{M}_{g,4}$:



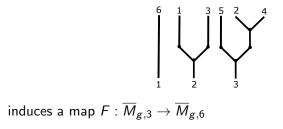
On homology, this defines an action of $\textbf{FS}^{\mathrm{op}}.$

An **FS**^{op} module structure on $H_i(\overline{M}_{g,n})$

Why? At space level this construction generates an action by the category, **BT**, of binary forests.

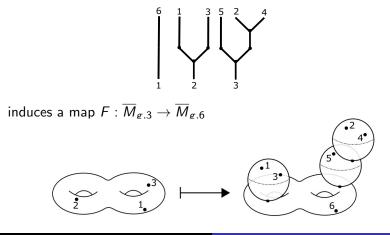
An **FS**^{op} module structure on $H_i(\overline{M}_{g,n})$

Why? At space level this construction generates an action by the category, **BT**, of binary forests. The forest F



An **FS**^{op} module structure on $H_i(\overline{M}_{g,n})$

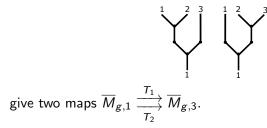
Why? At space level this construction generates an action by the category, **BT**, of binary forests. The forest F



An **FS**^{op} module structure on $H_i(\overline{M}_{g,n})$

On homology, different trees induce the same map.

For example, the trees

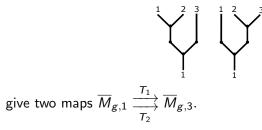


Intro to Topology Configuration Spaces Moduli Spaces of Curves

An **FS**^{op} module structure on $H_i(\overline{M}_{g,n})$

On homology, different trees induce the same map.

For example, the trees



There is a single gluing map

$$\overline{M}_{g,1} imes \overline{M}_{0,4} o \overline{M}_{g,3}.$$

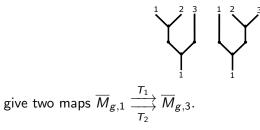
 T_1 and T_2 are given by evaluating this gluing map at two different points of $\overline{M}_{0,4}$.

Intro to Topology Configuration Spaces Moduli Spaces of Curves

An **FS**^{op} module structure on $H_i(\overline{M}_{g,n})$

On homology, different trees induce the same map.

For example, the trees



There is a single gluing map

$$\overline{M}_{g,1} imes \overline{M}_{0,4} o \overline{M}_{g,3}.$$

 T_1 and T_2 are given by evaluating this gluing map at two different points of $\overline{M}_{0,4}$. Since $\overline{M}_{0,4}$ is connected, there is a path between them, and they induce the **same** map on homology.

Finite generation

Arguing like this, we see that the action of BT induces an $\textbf{FS}^{\rm op}$ action on homology.

Finite generation

Arguing like this, we see that the action of BT induces an $\textbf{FS}^{\rm op}$ action on homology.

Theorem Let $g, i \in \mathbb{N}$. Then the **FS**^{op} module

$$n\mapsto H_i(\overline{M}_{g,n},\mathbb{Q})$$

is a subquotient of an FS^{op} module that is finitely generated in degree $\leq p(g, i)$ where p(g, i) is a polynomial in g and i of order $O(g^2i^2)$.

Applying results of Sam–Snowden on finitely generated $\textbf{FS}^{\rm op}$ modules, we obtain the following

Corollary

Let C = p(g, i). Then

► The generating function for the dimension of H_i(M_{g,n}) is rational and takes the form

$$\sum_{n} \dim H_{i}(\overline{M}_{g,n})t^{n} = \frac{f(t)}{\prod_{j=1}^{C}(1-jt)^{d_{j}}}$$

for some polynomial f(t) and $d_j \in \mathbb{N}$.

Applying results of Sam–Snowden on finitely generated $\textbf{FS}^{\rm op}$ modules, we obtain the following

Corollary

Let C = p(g, i). Then

► The generating function for the dimension of H_i(M_{g,n}) is rational and takes the form

$$\sum_{n} \dim H_{i}(\overline{M}_{g,n})t^{n} = \frac{f(t)}{\prod_{j=1}^{C}(1-jt)^{d_{j}}}$$

for some polynomial f(t) and $d_j \in \mathbb{N}$.

In particular, there exist polynomials f₁(n),..., f_C(n) such that for n ≫ 0 we have dim H_i(M_{g,n}) = ∑_{j=1}^C f_j(n)jⁿ

Applying results of Sam–Snowden on finitely generated $\textbf{FS}^{\rm op}$ modules, we obtain the following

Corollary

Let C = p(g, i). Then

Let λ be an integer partition of n. If the irreducible S_n representation M_λ occurs in the decomposition of H_i(M_{g,n}, Q), then λ has length ≤ C. (The Young diagram of λ has ≤ C rows).

Applying results of Sam–Snowden on finitely generated $\textbf{FS}^{\rm op}$ modules, we obtain the following

Corollary

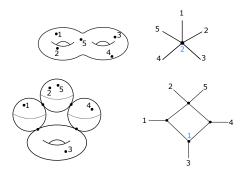
Let C = p(g, i). Then

- Let λ be an integer partition of n. If the irreducible S_n representation M_λ occurs in the decomposition of H_i(M_{g,n}, Q), then λ has length ≤ C. (The Young diagram of λ has ≤ C rows).
- Let λ = λ₁ ≥ λ₂ ≥ · · · ≥ λ_C be an integer partition of k, and λ + n be the partition λ₁ + n ≥ λ₂ ≥ · · · ≥ λ_C. The multiplicity of λ + n in H_i(M_{g,n+k}),

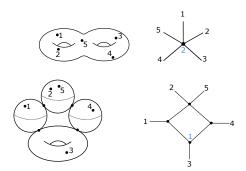
$$n \mapsto \dim \operatorname{Hom}_{\mathbf{S}_{n+k}}(M_{\lambda+n}, H_i(\overline{M}_{g,n+k})),$$

is bounded by a polynomial of degree C - 1.

To each curve, we can associate a stable graph. This stratifies $\overline{M}_{g,n}$

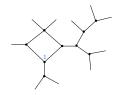


To each curve, we can associate a stable graph. This stratifies $\overline{M}_{g,n}$



To bound $H_i(\overline{M}_{g,n})$, we bound the (Borel–Moore) homology of these strata.

 ${\bf BT}$ acts on the strata by tacking on trees. Any homology class coming from this stratum



is pushed forward from a smaller stratum

Want to show that only finitely many graphs can contribute \mathbf{FS}^{op} module generators to $H_i(\overline{M}_{g,n})$. The above argument shows that graphs with external Y's do not give generators.

Want to show that only finitely many graphs can contribute \mathbf{FS}^{op} module generators to $H_i(\overline{M}_{g,n})$. The above argument shows that graphs with **external Y**'s do not give generators.

Cohomological dimension of $M_{g,1} \implies$ any graph that contributes *i* dimensional classes must have many **trivalent vertices** (and genus < g).

Want to show that only finitely many graphs can contribute \mathbf{FS}^{op} module generators to $H_i(\overline{M}_{g,n})$. The above argument shows that graphs with **external Y**'s do not give generators.

Cohomological dimension of $M_{g,1} \implies$ any graph that contributes *i* dimensional classes must have many **trivalent vertices** (and genus < g).

As $n \to \infty$, this **constrains** which graphs can contribute *i* dimensional classes. **Most have external** *Y*'s.

Want to show that only finitely many graphs can contribute \mathbf{FS}^{op} module generators to $H_i(\overline{M}_{g,n})$. The above argument shows that graphs with **external Y**'s do not give generators.

Cohomological dimension of $M_{g,1} \implies$ any graph that contributes *i* dimensional classes must have many **trivalent vertices** (and genus < g).

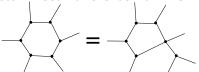
As $n \to \infty$, this **constrains** which graphs can contribute *i* dimensional classes. **Most have external** *Y*'s.

This is a possible exception.

Want to show that only finitely many graphs can contribute generators to $H_i(\overline{M}_{g,n})$. The above argument shows that graphs with **external** Y's do not give generators.

Cohomological vanishing of $M_{g,1} \implies$ any graph that contributes *i* dimensional classes must have many **trivalent vertices** (and genus < g).

As $n \to \infty$, this **constrains** which graphs can contribute *i* dimensional classes. **Most have external** *Y*'s



This is a possible exception. But any class from first stratum should be a homologous to one from the second.

Technical problems

The category **BT** is not known to be Noetherian, and $FS^{\rm op}$ does not act on the spectral sequence associated to the filtration.

Need to define a **coarsening** of the stratification to make the argument work– requires more combinatorics and some algebraic geometry.

Thanks!

Thanks Andrew!

Thanks to my committee: David, Jenny, Karen, and Venky.

Thanks to my parents for travelling here from NH!

Thanks Alyssa!