Cutting and Pasting rethinking how we measure

Phil Tosteson

UMich Undergrad Math Club, March 2018

Rethinking size

In math, we often think of $[0,1]$ and $[0,1)$ as having the same size.

- They have the same length
- They have the same cardinality

Rethinking size

In math, we often think of $[0,1]$ and $[0,1)$ as having the same size.

- They have the same length
- They have the same cardinality

But clearly, $[0,1]$ has an extra point!

Rethinking size

In math, we often think of $[0,1]$ and $[0,1)$ as having the same size.

- They have the same length
- They have the same cardinality

But clearly, $[0,1]$ has an extra point!
What happens when we measure shapes while taking this extra point into account?

Which is a better meter stick?

If $[0,1]$ and $[0,1)$ no longer have the same size, then we have to choose which one to measure length with.

Closed intervals $=$ Bad

If we use $[0,1]$ as our unit of size $\mathbf{1 m}$, then two copies of $[0,1]$ would have size $\mathbf{2 m}$.

But $[0,2]$ should also have length $2 \mathbf{m}$, and there is a point left over!

Half-open intervals $=$ Good

If we use the half interval, there is no overlap, so things work out better.

Half-open intervals $=$ Good

If we use the half interval, there is no overlap, so things work out better.

We will use half open intervals as our meter sticks!

Size

We will measure shapes in metric units $\mathbf{m}=$ meters.
For example:

- $[0,1)$ has size $1 \mathbf{m}$,
- $[0,2)$ has size $2 \mathbf{m}$,
- $[a, b)$ has size $(b-a) \mathbf{m}$

Size

We will measure shapes in metric units $\mathbf{m}=$ meters.
For example:

- $[0,1)$ has size $1 \mathbf{m}$,
- $[0,2)$ has size $2 \mathbf{m}$,
- $[a, b)$ has size $(b-a) \mathbf{m}$

But $[0,1]$ has size $1 \mathbf{m}+1$. Because

Size

We will measure shapes in metric units $\mathbf{m}=$ meters.
For example:

- $[0,1)$ has size $1 \mathbf{m}$,
- $[0,2)$ has size $2 \mathbf{m}$,
- $[a, b)$ has size $(b-a) \mathbf{m}$

But $[0,1]$ has size $1 \mathbf{m}+1$. Because

Similarly $(0,1)$ has size $1 \mathbf{m}-1$.

Size

We will measure shapes in metric units $\mathbf{m}=$ meters.
For example:

- $[0,1)$ has size $1 \mathbf{m}$,
- $[0,2)$ has size $2 \mathbf{m}$,
- $[a, b)$ has size $(b-a) \mathbf{m}$

But $[0,1]$ has size $1 \mathbf{m}+1$. Because

Similarly $(0,1)$ has size $1 \mathbf{m}-1$.
What happens when we measure other shapes using our new convention?

Rectangles

The size of the rectangle $[0, I) \times[0, w)$ is

$$
/ \mathbf{m} \cdot w \mathbf{m}=/ w \mathbf{m}^{2} .
$$

Rectangles

What about a closed rectangle?

Rectangles

We break it up into pieces

Rectangles

We break it up into pieces

Collecting terms, we get $L W \mathbf{m}^{2}+(L+W) \mathbf{m}+1$.

Rectangles

We also could have calculated

$$
(L \mathbf{m}+1)(W \mathbf{m}+1)=L W \mathbf{m}^{2}+(L+W) \mathbf{m}+1
$$

and gotten the same answer!

Other shapes?

Rectangles are somewhat plain shapes. What are the sizes of these?

Other shapes?

Rectangles are somewhat plain shapes. What are the sizes of these?

To find out, we will have to go through several steps

Rotations

Tilted rectangles are a bit more exciting than ordinary rectangles

Rotations

Tilted rectangles are a bit more exciting than ordinary rectangles

This still has size $L W \mathbf{m}^{2}+(L+W) \mathbf{m}+1$. (Size is not changed by rotations).

Parallelogram

What is the size of this parallelogram?

Parallelogram

What is the size of this parallelogram?

We can find out by breaking it into pieces

Parallelogram

We can rearrange these pieces using the identity

Parallelogram

So we have

Parallelogram

The size of the parallelogram is

$$
A \mathbf{m}^{2}+\frac{1}{2} P \mathbf{m}+1
$$

where A is the area and P is the perimeter.

Triangle

What about a triangle?

Triangle

What about a triangle?

We "double" it to a parallelogram

Triangle

We have

Triangle

We have

Rearranging, we get

Triangle

We have

Rearranging, we get

We can solve for the triangle.

Triangle

We have

Rearranging, we get

We can solve for the triangle.

$$
A \mathbf{m}^{2}+\frac{1}{2} P \mathbf{m}+1
$$

where A is the area of the triangle and P is the perimeter.

Other shapes, revisited

Now we can calculate the sizes of other shapes by cutting them into triangles.

Solid shapes

The size of a two dimensional shape is a polynomial in \mathbf{m}. For all of the solid (closed) shapes

Solid shapes

The size of a two dimensional shape is a polynomial in \mathbf{m}. For all of the solid (closed) shapes

- The coefficient of \mathbf{m}^{2} is area

Solid shapes

The size of a two dimensional shape is a polynomial in \mathbf{m}. For all of the solid (closed) shapes

- The coefficient of \mathbf{m}^{2} is area
- The coefficient of \mathbf{m} is $1 / 2$ the perimeter

Solid shapes

The size of a two dimensional shape is a polynomial in \mathbf{m}. For all of the solid (closed) shapes

- The coefficient of \mathbf{m}^{2} is area
- The coefficient of \mathbf{m} is $1 / 2$ the perimeter
- The constant coefficient is 1

Solid shapes

The size of a two dimensional shape is a polynomial in \mathbf{m}. For all of the solid (closed) shapes

- The coefficient of \mathbf{m}^{2} is area
- The coefficient of \mathbf{m} is $1 / 2$ the perimeter
- The constant coefficient is 1

We can prove that this happens for all polygons, by induction on the number of triangles it takes to make them.

Not quite solid shapes

If we subtract half edge from the triangle,

then the \mathbf{m}^{2} and \mathbf{m}^{0} term stay unchanged, but the \mathbf{m}^{1} term decreases by the length of the edge.

Not quite solid shapes

If we subtract half edge from the triangle,

then the \mathbf{m}^{2} and \mathbf{m}^{0} term stay unchanged, but the \mathbf{m}^{1} term decreases by the length of the edge.

For the triangle without borders, the \mathbf{m}^{1} term is $-1 / 2 P$

Not quite solid shapes

If we subtract half edge from the triangle,

then the \mathbf{m}^{2} and \mathbf{m}^{0} term stay unchanged, but the \mathbf{m}^{1} term decreases by the length of the edge.

For the triangle without borders, the \mathbf{m}^{1} term is $-1 / 2 P$
We might say that closed sides count for $+1 / 2$ and open sides count for $-1 / 2$.

Not solid shapes

If we subtract half edge from the triangle,

then the \mathbf{m}^{2} and \mathbf{m}^{0} term stay unchanged, but the \mathbf{m}^{1} term decreases by the length of the edge.

Not solid shapes

If we subtract half edge from the triangle,

then the \mathbf{m}^{2} and \mathbf{m}^{0} term stay unchanged, but the \mathbf{m}^{1} term decreases by the length of the edge.

For the triangle without borders, the \mathbf{m}^{1} term is $-1 / 2 P$.

Not solid shapes

If we subtract half edge from the triangle,

then the \mathbf{m}^{2} and \mathbf{m}^{0} term stay unchanged, but the \mathbf{m}^{1} term decreases by the length of the edge.

For the triangle without borders, the \mathbf{m}^{1} term is $-1 / 2 P$.
Closed sides count for $+1 / 2$ and open sides count for $-1 / 2$.

One?

The \boldsymbol{m}^{2} term is area, and the \boldsymbol{m}^{1} term is a weighted count of the perimeter. What is the constant term?

One?

The \boldsymbol{m}^{2} term is area, and the \boldsymbol{m}^{1} term is a weighted count of the perimeter. What is the constant term?

We can make the \mathbf{m}^{0} term 0 by removing a point.

One?

The \boldsymbol{m}^{2} term is area, and the \boldsymbol{m}^{1} term is a weighted count of the perimeter. What is the constant term?

We can make the \mathbf{m}^{0} term 0 by removing a point.

Or we can make it -22 !

One?

The \boldsymbol{m}^{2} term is area, and the \boldsymbol{m}^{1} term is a weighted count of the perimeter. What is the constant term?

We can make the \mathbf{m}^{0} term 0 by removing a point.

Or we can make it -22 !
Let's restrict to closed shapes.

Constant term is number

For two squares

we have $2\left(A \mathbf{m}^{2}+1 / 2 P \mathbf{m}+1 \mathbf{m}^{0}\right)$, so the constant term is $2 \mathbf{m}^{0}$.

Constant term is number

For any three shapes the constant term is $3 \mathbf{m}^{0}$.

Constant term is number

For any three shapes the constant term is $3 \mathbf{m}^{0}$.

Zero-dimensional measurement is counting!

Constant term is number

For any three shapes the constant term is $3 \mathbf{m}^{0}$.

Zero-dimensional measurement is counting!
It doesn't depend on sizes, or whether the shape is a square or a triangle.

Or is it?

What is the size of a square with missing center?

Or is it?

What is the size of a square with missing center?

Write S for the big side length, and s for the small one. We have

$(S \mathbf{m}+1)^{2}-(s \mathbf{m}-1)^{2}=\left(S^{2}-s^{2}\right) \mathbf{m}^{2}+(2 S+2 s) \mathbf{m}+0$.

Or is it?

What is the size of a square with missing center?

Write S for the big side length, and s for the small one. We have

$$
(S \mathbf{m}+1)^{2}-(s \mathbf{m}-1)^{2}=\left(S^{2}-s^{2}\right) \mathbf{m}^{2}+(2 S+2 s) \mathbf{m}+0 .
$$

The \mathbf{m}^{2} and \mathbf{m}^{1} term are as expected, but the \mathbf{m}^{0} is zero!

Holes

Each time we subtract another square, we subtract another $(s \mathbf{m}-1)^{2}$:

has constant term $-1 \mathbf{m}^{0}$.

Holes

Each time we subtract another square, we subtract another $(s \mathbf{m}-1)^{2}$:

has constant term $-1 \mathbf{m}^{0}$.

has constant term $-3 \mathbf{m}^{0}$.

Holes

In general, we should add up the number of shapes, and subtract the number of holes.

has constant term

$$
3 \mathbf{m}^{0}-7 \mathbf{m}^{0}=-4 \mathbf{m}^{0}
$$

Constant term is topological number

We will call the constant term the number of a shape.

Constant term is topological number

We will call the constant term the number of a shape.
Like before, the number does not care about sizes, or whether the shape is a square or not. For example:

Has number -2 .

Constant term is topological number

We will call the constant term the number of a shape.
Like before, the number does not care about sizes, or whether the shape is a square or not. For example:

Has number -2 .
The number only depends on the topology of the shape.

Constant term is topological number

The constant term only depends on the topology of the shape.
This means we can stretch or deform the shape, and its number stays the same.

The number of the circle is 1 , just like a square or a triangle.

Constant term is topological number

The constant term only depends on the topology of the shape.
This means we can stretch or deform the shape, and its number stays the same.

The number of the circle is 1 , just like a square or a triangle.

The number of the ring is zero, just like a square with a hole.

What is the number of a sphere?

Let's not limit ourselves to the plane!

What is the number of a sphere?

We can build the sphere from the top and the bottom

What is the number of a sphere?

We can build the sphere from the top and the bottom

So the number is $1+1-0=2$.

What is the number of a sphere?

We can build the sphere from the top and the bottom

So the number is $1+1-0=2$.
Warning: because we have to stretch the two caps, we can't figure out the \mathbf{m}^{2} or \mathbf{m}^{1} term this way.

What is the number of a sphere?

There are many other ways of figuring out the number of a sphere

We could break it up as a point plus an open disk, or as a two solid disks plus an open cylinder, etc.

No matter what way you try, you will get the same answer.

Tetrahedron

What is the size of a (hollow) tetrahedron?

Tetrahedron

Break it into faces, edges, and vertices.

We have

$$
\begin{gathered}
4 \cdot\left(\sqrt{3} / 4 \mathbf{m}^{2}+\right. \\
-3 / 3 \mathbf{m}+1)+6 \cdot(1 \mathbf{m}-1)+4 \cdot 1 \\
=\sqrt{3} \mathbf{m}^{2}-8 \mathbf{m}+2
\end{gathered}
$$

Tetrahedron

Break it into faces, edges, and vertices.

We have

$$
\begin{aligned}
4 \cdot\left(\sqrt{3} / 4 \mathbf{m}^{2}+\right. & -3 / 3 \mathbf{m}+1)+6 \cdot(1 \mathbf{m}-1)+4 \cdot 1 \\
& =\sqrt{3} \mathbf{m}^{2}-8 \mathbf{m}+2
\end{aligned}
$$

The 2 is because, topologically, the tetrahedron is the same as the sphere!

Cube

We can do the same thing for the cube

Cube

We can do the same thing for the cube

We already know that the constant term will be $2 \mathbf{m}^{0}$, the topological number of the sphere.

Cube

The constant term is

$$
F-E+V
$$

the number of faces minus the number of edges, plus the number of vertices. We get

$$
6-12+8=2
$$

Cube

The constant term is

$$
F-E+V
$$

the number of faces minus the number of edges, plus the number of vertices. We get

$$
6-12+8=2
$$

This works the same for other polyhedra (octahedra, dodecahedra, soccer balls!).

Euler number

Theorem
For any polyhedron

$$
F-E+V=2
$$

where F, E and V are the number of faces, edges, and vertices respectively.

Euler number

Theorem
For any polyhedron

$$
F-E+V=2
$$

where F, E and V are the number of faces, edges, and vertices respectively.

This theorem was first proved by Euler, and the topological number is named after him.
topological number of $X=\chi_{c}(X)=$ Euler-characteristic of X

Axioms

Here are the rules that we've used to calculate sizes

- $\left[0,1\right.$) has size $\mathbf{1} \mathbf{m}^{1}$ and $\{1\}$ has size $\mathbf{1 m}{ }^{0}$
- Size is preserved by cutting and pasting
- Size is preserved by translation and rotation
- The size of $A \times B$ is the size of A times the size of B

Axioms

Here are the rules that we've used to calculate sizes

- $\left[0,1\right.$) has size $\mathbf{1} \mathbf{m}^{1}$ and $\{1\}$ has size $\mathbf{1 m}{ }^{0}$
- Size is preserved by cutting and pasting
- Size is preserved by translation and rotation
- The size of $A \times B$ is the size of A times the size of B

We've shown that these rules are strong enough to measure any two dimensional shape built by adding and subtracting triangles.

Axioms

Here are the rules that we've used to calculate sizes

- $\left[0,1\right.$) has size $\mathbf{1} \mathbf{m}^{1}$ and $\{1\}$ has size $\mathbf{1} \mathbf{m}^{0}$
- Size is preserved by cutting and pasting
- Size is preserved by translation and rotation
- The size of $A \times B$ is the size of A times the size of B

We've shown that these rules are strong enough to measure any two dimensional shape built by adding and subtracting triangles.

It is surprising that no matter how you use these rules to compute the size of a shape, you get the same answer!

Axioms

Here are the rules that we've used to calculate sizes

- $\left[0,1\right.$) has size $\mathbf{1} \mathbf{m}^{1}$ and $\{1\}$ has size $\mathbf{1} \mathbf{m}^{0}$
- Size is preserved by cutting and pasting
- Size is preserved by translation and rotation
- The size of $A \times B$ is the size of A times the size of B

We've shown that these rules are strong enough to measure any two dimensional shape built by adding and subtracting triangles.

It is surprising that no matter how you use these rules to compute the size of a shape, you get the same answer!

What if we wanted to compute the size of a solid tetrahedron?

Axioms

Here are the rules that we've used to calculate sizes

- $\left[0,1\right.$) has size $\mathbf{1} \mathbf{m}^{1}$ and $\{1\}$ has size $\mathbf{1 m}{ }^{0}$
- Size is preserved by cutting and pasting
- Size is preserved by translation and rotation
- The size of $A \times B$ is the size of A times the size of B

We've shown that these rules are strong enough to measure any two dimensional shape built by adding and subtracting triangles.

It is surprising that no matter how you use these rules to compute the size of a shape, you get the same answer!

What if we wanted to compute the size of a solid tetrahedron? In higher dimensions, it is harder to cut and paste.

Steiner's formula

Start with a triangle:

Steiner's formula

And consider the set of all points that are within distance r of the triangle:

Steiner's formula

And consider the set of all points that are within distance r of the triangle:

What is the area of this shape as a function of r ? (Just plain area!)

Steiner's formula

To find the area, it helps to break the shape into pieces

Steiner's formula

To find the area, it helps to break the shape into pieces

The red pieces fit together!

Steiner's formula

So the total area is

Steiner's formula

So the total area is

where P and A are the perimeter and area of the triangle.

Steiner's Formula

$$
\left(\pi r^{2}+\operatorname{Pr}+A\right) \mathbf{m}^{2}
$$

Let's rearrange this formula more suggestively.

$$
A \mathbf{m}^{2} \cdot 1+\frac{P}{2} \mathbf{m} \cdot 2 r \mathbf{m}+1 \mathbf{m}^{0} \cdot \pi r^{2} \mathbf{m}^{2}
$$

Steiner's Formula

$$
\left(\pi r^{2}+\operatorname{Pr}+A\right) \mathbf{m}^{2}
$$

Let's rearrange this formula more suggestively.

$$
A \mathbf{m}^{2} \cdot 1+\frac{P}{2} \mathbf{m} \cdot 2 r \mathbf{m}+1 \mathbf{m}^{0} \cdot \pi r^{2} \mathbf{m}^{2}
$$

The coefficients $1,2 r \mathbf{m}, \pi r^{2} \mathbf{m}^{2}$ are the $0,1,2$ volume of the $0,1,2$ disk.

$$
D_{d}(r)=\left\{\left(x_{i}\right)_{i=1}^{d} \in \mathbb{R}^{d} \mid \sum_{i} x_{i}^{2} \leq r\right\}
$$

Steiner's formula

The same formula works for other polygons

Counterexample

But not for shapes that are not convex

Counterexample

But not for shapes that are not convex

Steiner's formula

Theorem (Steiner)

For any convex body, $X \subset \mathbb{R}^{d}$, the volume of the set of points within distance r of X is

$$
\operatorname{vol}_{d}(X)+\operatorname{vol}_{d-1}(X) \cdot 2 r+\cdots+\operatorname{vol}_{d-i}(X) \cdot k_{i} r^{i} \cdots+1 \cdot k_{d} r^{d}
$$

where k_{i} is the volume of D_{i}, and $\operatorname{vol}_{i}(X)$ is independent of r.

Steiner's formula

Theorem (Steiner)
For any convex body, $X \subset \mathbb{R}^{d}$, the volume of the set of points within distance r of X is

$$
\operatorname{vol}_{d}(X)+\operatorname{vol}_{d-1}(X) \cdot 2 r+\cdots+\operatorname{vol}_{d-i}(X) \cdot k_{i} r^{i} \cdots+1 \cdot k_{d} r^{d}
$$

where k_{i} is the volume of D_{i}, and $\operatorname{vol}_{i}(X)$ is independent of r.
The numbers $\operatorname{vol}_{i}(X)$ are exactly what we've been measuring!

Steiner's formula

Theorem (Steiner)

For any convex body, $X \subset \mathbb{R}^{d}$, the volume of the set of points within distance r of X is

$$
\operatorname{vol}_{d}(X)+\operatorname{vol}_{d-1}(X) \cdot 2 r+\cdots+\operatorname{vol}_{d-i}(X) \cdot k_{i} r^{i} \cdots+1 \cdot k_{d} r^{d}
$$

where k_{i} is the volume of D_{i}, and $\operatorname{vol}_{i}(X)$ is independent of r.
The numbers $\operatorname{vol}_{i}(X)$ are exactly what we've been measuring! $\operatorname{vol}_{i}(X)$ is called the i th intrinsic volume of X.

Applications

We can use Steiner's theorem to define the size (for closed convex shapes).

Applications

We can use Steiner's theorem to define the size (for closed convex shapes).

This is useful for

- Higher dimensions
- Shapes that are not polygons
- Developing a rigorous theory of size (like measure theory).

Applications

We can use Steiner's theorem to define the size (for closed convex shapes).

This is useful for

- Higher dimensions
- Shapes that are not polygons
- Developing a rigorous theory of size (like measure theory).

For example, when X is the unit ball in \mathbb{R}^{3}, the volume of $B_{r}(X)$ is

$$
\frac{4 \pi}{3}(1+r)^{3} \mathbf{m}^{3}
$$

Applications

We can use Steiner's theorem to define the size (for closed convex shapes).

This is useful for

- Higher dimensions
- Shapes that are not polygons
- Developing a rigorous theory of size (like measure theory).

For example, when X is the unit ball in \mathbb{R}^{3}, the volume of $B_{r}(X)$ is

$$
\frac{4 \pi}{3}(1+r)^{3} \mathbf{m}^{3}
$$

So the size of the unit ball is

$$
\frac{4 \pi}{3} \boldsymbol{m}^{3}+\frac{4 \pi}{2} \boldsymbol{m}^{2}+4 \boldsymbol{m}+1
$$

What is the length of a ball?

Applications

We can use Steiner's theorem to define the size (for closed convex shapes).

This is useful for

- Higher dimensions
- Shapes that are not polygons
- Developing a rigorous theory of size (like measure theory).

For example, when X is the unit ball in \mathbb{R}^{3}, the volume of $B_{r}(X)$ is

$$
\frac{4 \pi}{3}(1+r)^{3} \mathbf{m}^{3}
$$

So the size of the unit ball is

$$
\frac{4 \pi}{3} \mathbf{m}^{3}+\frac{4 \pi}{2} \mathbf{m}^{2}+4 \boldsymbol{m}+1
$$

What is the length of a ball? Four!

Angles

Steiner's formula suggests that angles are related to topological number.

Angles

Steiner's formula suggests that angles are related to topological number.

This is surprising, because angles are not topological!

Angles

Steiner's formula suggests that angles are related to topological number.

Angles

Steiner's formula suggests that angles are related to topological number.

This is surprising, because angles are not topological!

Angles

Steiner's formula suggests that angles are related to topological number.

This is surprising, because angles are not topological!
Let's examine this more

Angles

It helps to think of the angle in Steiner's formula as the external angle

The red angles in both pictures are the same.

Angles

The unfilled pentagon has topological number 0 .

Angles

We can think of the fact that the Steiner angles add up to one in terms of an ant walking around the path.

The angles add up to 2π because the ant turns around once.

Angles

This also works for paths that are not the boundary of a convex shape.

The pink angles cancel two of the red angles, so we get 2π in total.

From angles to curvature

If we want to follow paths that are not just straight lines, then we can take the limit of straight approximations

For a curve $(x(t), y(t))$, the infinitesimal "external angle" is given by the curvature

$$
k(t)=\frac{x^{\prime}(t) y^{\prime \prime}(t)-y^{\prime}(t) x^{\prime \prime}(t)}{\left(x^{\prime}(t)^{2}+y^{\prime}(t)^{2}\right)^{3 / 2}}
$$

Integrating curvature

The integral

$$
K=\int k(t) \mathrm{d} t
$$

is the total curvature of the curve (just like the sum of the angles).

Integrating curvature

The integral

$$
K=\int k(t) \mathrm{d} t
$$

is the total curvature of the curve (just like the sum of the angles).

Theorem (Gauss)
The integral K is always $2 \pi N$ where $N-1$ is the number of times the curve intersects itself (counted with multiplicity).

This is just the beginning of the interaction between curvature and topology!

Thanks for coming!

For more, see What is the length of a potato? by Steven Schanuel
Some related key words:

- Quermassintegrals
- Weyl's tube theorem
- Curvature measures
- Gauss Bonnet
- Polytope algebra

