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Rethinking size

In math, we often think of [0, 1] and [0, 1) as having the same size.

I They have the same length

I They have the same cardinality

But clearly, [0, 1] has an extra point!

What happens when we measure shapes while taking this extra
point into account?

Phil Tosteson Cutting and Pasting



Rethinking size

In math, we often think of [0, 1] and [0, 1) as having the same size.

I They have the same length

I They have the same cardinality

But clearly, [0, 1] has an extra point!

What happens when we measure shapes while taking this extra
point into account?

Phil Tosteson Cutting and Pasting



Rethinking size

In math, we often think of [0, 1] and [0, 1) as having the same size.

I They have the same length

I They have the same cardinality

But clearly, [0, 1] has an extra point!

What happens when we measure shapes while taking this extra
point into account?

Phil Tosteson Cutting and Pasting



Which is a better meter stick?

If [0, 1] and [0, 1) no longer have the same size, then we have to
choose which one to measure length with.
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Closed intervals = Bad

If we use [0, 1] as our unit of size 1m, then two copies of [0, 1]
would have size 2m.

But [0, 2] should also have length 2m, and there is a point left
over!
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Half-open intervals = Good

If we use the half interval, there is no overlap, so things work out
better.

We will use half open intervals as our meter sticks!
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Size

We will measure shapes in metric units m = meters.

For example:

I [0, 1) has size 1m,

I [0, 2) has size 2m,

I [a, b) has size (b − a)m

But [0, 1] has size 1m + 1. Because

Similarly (0, 1) has size 1m− 1.

What happens when we measure other shapes using our new
convention?

Phil Tosteson Cutting and Pasting



Size

We will measure shapes in metric units m = meters.

For example:

I [0, 1) has size 1m,

I [0, 2) has size 2m,

I [a, b) has size (b − a)m

But [0, 1] has size 1m + 1. Because

Similarly (0, 1) has size 1m− 1.

What happens when we measure other shapes using our new
convention?

Phil Tosteson Cutting and Pasting



Size

We will measure shapes in metric units m = meters.

For example:

I [0, 1) has size 1m,

I [0, 2) has size 2m,

I [a, b) has size (b − a)m

But [0, 1] has size 1m + 1. Because

Similarly (0, 1) has size 1m− 1.

What happens when we measure other shapes using our new
convention?

Phil Tosteson Cutting and Pasting



Size

We will measure shapes in metric units m = meters.

For example:

I [0, 1) has size 1m,

I [0, 2) has size 2m,

I [a, b) has size (b − a)m

But [0, 1] has size 1m + 1. Because

Similarly (0, 1) has size 1m− 1.

What happens when we measure other shapes using our new
convention?

Phil Tosteson Cutting and Pasting



Rectangles

The size of the rectangle [0, l)× [0,w) is

lm · wm = lw m2.
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Rectangles

What about a closed rectangle?

Phil Tosteson Cutting and Pasting



Rectangles

We break it up into pieces

Collecting terms, we get LWm2 + (L + W )m + 1.
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Rectangles

We also could have calculated

(Lm + 1)(Wm + 1) = LWm2 + (L + W )m + 1

and gotten the same answer!
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Other shapes?

Rectangles are somewhat plain shapes. What are the sizes of
these?

To find out, we will have to go through several steps
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Rotations

Tilted rectangles are a bit more exciting than ordinary rectangles

This still has size LWm2 + (L + W )m + 1.
(Size is not changed by rotations).
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Parallelogram

What is the size of this parallelogram?

We can find out by breaking it into pieces
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Parallelogram

We can rearrange these pieces using the identity
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Parallelogram

So we have
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Parallelogram

The size of the parallelogram is

A m2 +
1

2
P m + 1,

where A is the area and P is the perimeter.
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Triangle

What about a triangle?

We “double” it to a parallelogram
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Triangle

We have

Rearranging, we get

We can solve for the triangle.

A m2 +
1

2
P m + 1,

where A is the area of the triangle and P is the perimeter.
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Other shapes, revisited

Now we can calculate the sizes of other shapes by cutting them
into triangles.
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Solid shapes

The size of a two dimensional shape is a polynomial in m. For all
of the solid (closed) shapes

I The coefficient of m2 is area

I The coefficient of m is 1/2 the perimeter

I The constant coefficient is 1

We can prove that this happens for all polygons, by induction on
the number of triangles it takes to make them.
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Not quite solid shapes
If we subtract half edge from the triangle,

then the m2 and m0 term stay unchanged, but the m1 term
decreases by the length of the edge.

For the triangle without borders, the m1 term is −1/2P

We might say that closed sides count for +1/2 and open sides
count for −1/2.
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One?
The m2 term is area, and the m1 term is a weighted count of the
perimeter. What is the constant term?

We can make the m0 term 0 by removing a point.

Or we can make it −22!

Let’s restrict to closed shapes.
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Constant term is number

For two squares

we have 2(Am2 + 1/2Pm + 1m0), so the constant term is 2m0.
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Constant term is number
For any three shapes the constant term is 3m0.

Zero-dimensional measurement is counting!

It doesn’t depend on sizes, or whether the shape is a square or a
triangle.
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Or is it?

What is the size of a square with missing center?

Write S for the big side length, and s for the small one. We have

(Sm + 1)2 − (sm− 1)2 = (S2 − s2)m2 + (2S + 2s)m + 0.

The m2 and m1 term are as expected, but the m0 is zero!
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Holes

Each time we subtract another square, we subtract another
(sm− 1)2:

has constant term −1m0.

has constant term −3m0.
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Holes

In general, we should add up the number of shapes, and subtract
the number of holes.

has constant term

3m0 − 7m0 = −4m0.
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Constant term is topological number

We will call the constant term the number of a shape.

Like before, the number does not care about sizes, or whether the
shape is a square or not. For example:

Has number −2.

The number only depends on the topology of the shape.
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Constant term is topological number

The constant term only depends on the topology of the shape.

This means we can stretch or deform the shape, and its number
stays the same.

The number of the circle is 1,
just like a square or a triangle.

The number of the ring is zero,
just like a square with a hole.
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What is the number of a sphere?

Let’s not limit ourselves to the plane!

Phil Tosteson Cutting and Pasting



What is the number of a sphere?

We can build the sphere from the top and the bottom

So the number is 1 + 1− 0 = 2.

Warning: because we have to stretch the two caps, we can’t
figure out the m2 or m1 term this way.
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What is the number of a sphere?

There are many other ways of figuring out the number of a sphere

We could break it up as a point plus an open disk, or as a two
solid disks plus an open cylinder, etc.

No matter what way you try, you will get the same answer.
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Tetrahedron

What is the size of a (hollow) tetrahedron?
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Tetrahedron

Break it into faces, edges, and vertices.

We have

4 · (
√

3/4m2 +−3/3m + 1) + 6 · (1m− 1) + 4 · 1

=
√

3m2 − 8m + 2

The 2 is because, topologically, the tetrahedron is the same as the
sphere!
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Cube

We can do the same thing for the cube

We already know that the constant term will be 2m0, the
topological number of the sphere.
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Cube

The constant term is
F − E + V ,

the number of faces minus the number of edges, plus the number
of vertices. We get

6− 12 + 8 = 2

This works the same for other polyhedra (octahedra, dodecahedra,
soccer balls!).
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Euler number

Theorem
For any polyhedron

F − E + V = 2,

where F ,E and V are the number of faces, edges, and vertices
respectively.

This theorem was first proved by Euler, and the topological
number is named after him.

topological number of X = χc(X ) = Euler-characteristic of X
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Axioms

Here are the rules that we’ve used to calculate sizes

I [0, 1) has size 1m1 and {1} has size 1m0

I Size is preserved by cutting and pasting

I Size is preserved by translation and rotation

I The size of A× B is the size of A times the size of B

We’ve shown that these rules are strong enough to measure any
two dimensional shape built by adding and subtracting triangles.

It is surprising that no matter how you use these rules to compute
the size of a shape, you get the same answer!

What if we wanted to compute the size of a solid tetrahedron? In
higher dimensions, it is harder to cut and paste.
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Steiner’s formula

Start with a triangle:
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Steiner’s formula

And consider the set of all points that are within distance r of the
triangle:

r

What is the area of this shape as a function of r? (Just plain area!)
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Steiner’s formula
To find the area, it helps to break the shape into pieces

The red pieces fit together!
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Steiner’s formula

So the total area is

= (πr2 + Pr + A) m2,

where P and A are the perimeter and area of the triangle.
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Steiner’s Formula

(πr2 + Pr + A) m2

Let’s rearrange this formula more suggestively.

A m2 · 1 +
P

2
m · 2rm + 1m0 · πr2m2

The coefficients 1, 2rm, πr2m2 are the 0, 1, 2 volume of the 0, 1, 2
disk.

Dd(r) = {(xi )di=1 ∈ Rd |
∑
i

x2i ≤ r}

Phil Tosteson Cutting and Pasting



Steiner’s Formula

(πr2 + Pr + A) m2

Let’s rearrange this formula more suggestively.

A m2 · 1 +
P

2
m · 2rm + 1m0 · πr2m2

The coefficients 1, 2rm, πr2m2 are the 0, 1, 2 volume of the 0, 1, 2
disk.

Dd(r) = {(xi )di=1 ∈ Rd |
∑
i

x2i ≤ r}

Phil Tosteson Cutting and Pasting



Steiner’s formula

The same formula works for other polygons
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Counterexample

But not for shapes that are not convex
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Steiner’s formula

Theorem (Steiner)

For any convex body, X ⊂ Rd , the volume of the set of points
within distance r of X is

vold(X ) + vold−1(X ) · 2r + · · ·+ vold−i (X ) · ki r i · · ·+ 1 · kd rd

where ki is the volume of Di , and voli (X ) is independent of r .

The numbers voli (X ) are exactly what we’ve been measuring!

voli (X ) is called the ith intrinsic volume of X .

Phil Tosteson Cutting and Pasting



Steiner’s formula

Theorem (Steiner)

For any convex body, X ⊂ Rd , the volume of the set of points
within distance r of X is

vold(X ) + vold−1(X ) · 2r + · · ·+ vold−i (X ) · ki r i · · ·+ 1 · kd rd

where ki is the volume of Di , and voli (X ) is independent of r .

The numbers voli (X ) are exactly what we’ve been measuring!

voli (X ) is called the ith intrinsic volume of X .

Phil Tosteson Cutting and Pasting



Steiner’s formula

Theorem (Steiner)

For any convex body, X ⊂ Rd , the volume of the set of points
within distance r of X is

vold(X ) + vold−1(X ) · 2r + · · ·+ vold−i (X ) · ki r i · · ·+ 1 · kd rd

where ki is the volume of Di , and voli (X ) is independent of r .

The numbers voli (X ) are exactly what we’ve been measuring!

voli (X ) is called the ith intrinsic volume of X .

Phil Tosteson Cutting and Pasting



Applications
We can use Steiner’s theorem to define the size (for closed convex
shapes).

This is useful for

I Higher dimensions

I Shapes that are not polygons

I Developing a rigorous theory of size (like measure theory).

For example, when X is the unit ball in R3, the volume of Br (X ) is

4π

3
(1 + r)3m3

So the size of the unit ball is

4π

3
m3 +

4π

2
m2 + 4m + 1

What is the length of a ball? Four!
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Angles

Steiner’s formula suggests that angles are related to topological
number.

This is surprising, because angles are not topological!
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Angles

It helps to think of the angle in Steiner’s formula as the external
angle

The red angles in both pictures are the same.
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Angles

The unfilled pentagon has topological number 0.
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Angles

We can think of the fact that the Steiner angles add up to one in
terms of an ant walking around the path.

The angles add up to 2π because the ant turns around once.
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Angles

This also works for paths that are not the boundary of a convex
shape.

The pink angles cancel two of the red angles, so we get 2π in total.
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From angles to curvature
If we want to follow paths that are not just straight lines, then we
can take the limit of straight approximations

For a curve (x(t), y(t)), the infinitesimal “external angle” is given
by the curvature

k(t) =
x ′(t)y ′′(t)− y ′(t)x ′′(t)

(x ′(t)2 + y ′(t)2)3/2
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Integrating curvature
The integral

K =

∫
k(t)dt

is the total curvature of the curve (just like the sum of the angles).

Theorem (Gauss)

The integral K is always 2πN where N − 1 is the number of times
the curve intersects itself (counted with multiplicity).

This is just the beginning of the interaction between curvature and
topology!
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Thanks for coming!

For more, see What is the length of a potato? by Steven Schanuel

Some related key words:

I Quermassintegrals

I Weyl’s tube theorem

I Curvature measures

I Gauss Bonnet

I Polytope algebra

Phil Tosteson Cutting and Pasting


