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Inclusion-Exclusion

How many blue blobs are there?

There are 5 + 4− 2, so 7 in total
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With Overlaps

Does inclusion exclusion still work when there are overlaps?

Yes! We have 4 + 4− 3 = 5
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Or does it?

We have 1 + 1− 2 = 0. What is going on?

0 is the Euler Characteristic of the annulus.
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Theorem

For A and B open subsets of X we
have

χ(A∪B) = χ(A) + χ(B)− χ(A∩B)

.

Proof.

Mayer-Vietoris:

H∗(A ∪ B)→ H∗(A)⊕ H∗(B)→ H∗(A ∩ B)

+Fundamental fact: If C bounded complex then∑
i

(−1)i [H i (C )] =
∑
i

(−1)i [C i ]

Phil Tosteson, University of Michigan Inclusion Exclusion and Rep Stability for Configurations in Non-Manifolds
Young Topologists Meeting, July 2017 5

/ 20



Theorem

For A and B open subsets of X we
have

χ(A∪B) = χ(A) + χ(B)− χ(A∩B)

.

Proof.

Mayer-Vietoris:

H∗(A ∪ B)→ H∗(A)⊕ H∗(B)→ H∗(A ∩ B)

+Fundamental fact: If C bounded complex then∑
i

(−1)i [H i (C )] =
∑
i

(−1)i [C i ]

Phil Tosteson, University of Michigan Inclusion Exclusion and Rep Stability for Configurations in Non-Manifolds
Young Topologists Meeting, July 2017 5

/ 20



3-way Inclusion Exclusion

χ(A) + χ(B) + χ(C )− χ(A ∩ B)

−χ(A∩C )−χ(B∩C )+χ(A∩B∩C )

= χ(A ∪ B ∪ C )
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n-way Inclusion Exclusion

For Ai open subsets of X we have

χ(
⋃
i=1n

Ai ) =
∑
I⊂[n]

χ(∩i∈IAi )(−1)|I |

Theorem (Mayer-Vietoris Spectral sequence)

There is a convergent spectral sequence Ep,q
2 =⇒ Hp+q(

⋃
i∈[n] Ai ) with

Ep,q
2 =

⊕
I⊂[n], |I |=q

Hp(∩i∈I Ai )
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Degenerate Inclusion-Exclusion

If the intersections in the Venn diagram are redundant, then terms in the
inclusion exclusion formula cancel:

χ(A ∪ B ∪ C ) = χ(A) + χ(B) + χ(C )− 2χ(A ∩ B ∩ C )
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Mobius Numbers

Consider a finite collection of open subsets {Ui ⊂ X}ni=1

Let L = {U ⊂ X open | U = ∩i∈IUi for some I ⊂ [n]}
Then L is poset, ordered by reverse inclusion (U ≤ V ⇐⇒ U ⊇ V ).

L is a join lattice under intersection

For U ∈ L, define µ(U) is to be coefficient of χ(U) in the
inclusion-exclusion formula

µ(U) is a combinatorial invariant of the subposet L<U :=
{V ∈ L | V ) U}.
µ(U) is a topological invariant of its nerve µ(U) = χ(N(L<U))− 1

Equivalently, µ(U) is a homological invariant of L

µ(U) =
∑
i

(−1)i dimExtiL(Z,ZU)
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Degenerate Inclusion Exclusion

We can refine µ(U) to “mobius
betti numbers”

µi (U) = dim H̃ i−1(N(L<U))

And we can incorporate these
cohomology groups into a
spectral sequence

Theorem (Mobius Mayer-Vietoris)

There is a spectral sequence Ep,q
2 =⇒ Hp+q(

⋃
U∈L U) with⊕

Ep,q
2 =

⊕
U∈L

H̃p−1(N(L<U),Hq(U))
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Inclusion-Exclusion Backwards

We’ve been computing the Euler Characteristic of the union from the
iterated intersections.

Can we go the other way?

Can we compute χ(∩ni=1Ai ) from the Euler characteristics of unions?

When n = 2 we already have χ(A ∩ B) = χ(A) + χ(B)− χ(A ∩ B).

1 + 2− 1 = 2
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Backwards inclusion exclusion n = 3

χ(A) + χ(B) + χ(C )− χ(A ∪ B)

−χ(A∪C )−χ(B∪C )+χ(A∪B∪C )

= 5 + 4 + 5− 7− 7− 8 + 9

= 1

= χ(A ∩ B ∩ C )
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Backwards Mayer-Vietoris

It’s easy to prove that backwards inclusion-exclusion works for sets:
just take complements!

But this doesn’t “categorify” in an elementary way

Let Q be the poset formed by the finite unions of the Ui ordered by
reverse inclusion. It is now a lattice under unions.

Theorem (T.)

There is a spectral sequence E−p,q1 =⇒ H−p+q(∩iUi ) with⊕
p,q

E−p,q1 =
⊕
p,q

⊕
U∈Q

H̃p−1(N(Q>U),Hq(U))

This is backwards Mayer-Vietoris (with mobius coefficients).
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Configuration Space

X is a Hausdorff topological space

The ordered configuration space of n points in X is

Confn(X ) = {(xi ) ∈ X n | xi 6= xj for i 6= j}

Can visualize configuration space as n labelled points moving around
in X , where the points are not allowed to collide.

Notice, Confn(X ) is an open subset of X n which is an intersection of
the open subsets Uij = {(xk) | xi 6= xj} = X n − X n−1

The lattice generated by Uij under intersections is the lattice of set
partitions
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Question:

What is the (co)homology of Confn(X )? As an Sn representation?

Answer should involve the cohomology of X

But X 7→ Confn(X ) does not preserve homotopy equivalences– this
suggests we need more!

When n >> 0, we hope that H i (Confn(X )) admits a uniform
description.

For manifolds, the work of Totaro/Cohen gives the main tool to
answer this question, using knowledge about configurations in Rn

Using this work, Church established that the cohomology of
configurations in Confn(M) satisfies rep stability.
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A Variant of Backwards Mayer-Vietoris

There is a more useful version that uses H i (X ,U) = H i
Z (X ) where

Z = Uc instead of U.

By excision, these groups only depend on a neighborhood of Z in X .

When Z is an orientable submanifold, H i
Z (X ) = H i−dimZ (X ).

Theorem (T.)

There is a spectral sequence Ep,q
1 =⇒ Hp+q(∩iUi ) with⊕

p,q

Ep,q
1 =

⊕
U∈L′

H̃p−2(N((1̂,U)),Hq(X ,U))

This extends the tools of Totaro/Cohen to non-manifolds.
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Rep Stability for Non Manifolds

We say that a point p ∈ X is a roadblock if for U 3 p a contractible
neighborhood, U − p is disconnected.

Every point of a graph G is a roadblock
G × R1 has no roadblock points
A wedge of two spaces has a roadblock point at the wedge
Two spheres glued along an edge have no roadblocks

Theorem (T.)

Let X be a finite connected CW complex. If X has no roadblocks then

n 7→ H i (Confn(X ),Q)

is representation stable: in particular its dimension eventually agrees
with a polynomial in n.

Extends to reasonable connected locally contractible closed subsets of Rn.
For fields k 6= Q, the same criterion implies finite generation of FI modules
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Other Directions, Other Arrangement Complements?

Given Ui ⊂ X with Zi = X − Ui , intersecting the Ui is the same as
removing the union of the Zi⋂

i

Ui = X −
⋃
i

Zi

The spectral sequence from before gives a tool for computing the
cohomology from H∗Zi

(X ) and poset homology.

When X is a vector space and the Zi are subspaces, it degenerates at E1

and we recover a formula for the cohomology due to Goresky and
MacPherson.
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For More Info I

P. Tosteson
Lattice Spectral Sequences and Cohomology of Configuration Spaces.
https://arxiv.org/abs/1612.06034
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