Inclusion Exclusion and Rep Stability for Configurations in Non-Manifolds

Phil Tosteson,
University of Michigan

Young Topologists Meeting, July 2017

Inclusion-Exclusion

How many blue blobs are there?

Inclusion-Exclusion

How many blue blobs are there?

There are $5+4-2$, so 7 in total

With Overlaps

Does inclusion exclusion still work when there are overlaps?

With Overlaps

Does inclusion exclusion still work when there are overlaps?

Yes! We have $4+4-3=5$

Or does it?

We have $1+1-2=0$. What is going on?

Or does it?

We have $1+1-2=0$. What is going on?

0 is the Euler Characteristic of the annulus.

Proof.

Mayer-Vietoris:

$$
H^{*}(A \cup B) \rightarrow H^{*}(A) \oplus H^{*}(B) \rightarrow H^{*}(A \cap B)
$$

+ Fundamental fact: If C bounded complex then

$$
\sum_{i}(-1)^{i}\left[H^{i}(C)\right]=\sum_{i}(-1)^{i}\left[C^{i}\right]
$$

3-way Inclusion Exclusion

n-way Inclusion Exclusion

For A_{i} open subsets of X we have

$$
\chi\left(\bigcup_{i=1^{n}} A_{i}\right)=\sum_{I \subset[n]} \chi\left(\cap_{i \in I} A_{i}\right)(-1)^{|/|}
$$

Theorem (Mayer-Vietoris Spectral sequence)

There is a convergent spectral sequence $E_{2}^{p, q} \Longrightarrow H^{p+q}\left(\bigcup_{i \in[n]} A_{i}\right)$ with

$$
E_{2}^{p, q}=\bigoplus_{I \subset[n],|I|=q} H^{p}\left(\cap_{i \in I} A_{i}\right)
$$

Degenerate Inclusion-Exclusion

If the intersections in the Venn diagram are redundant, then terms in the inclusion exclusion formula cancel:

$\chi(A \cup B \cup C)=\chi(A)+\chi(B)+\chi(C)-2 \chi(A \cap B \cap C)$

Mobius Numbers

Consider a finite collection of open subsets $\left\{U_{i} \subset X\right\}_{i=1}^{n}$

Mobius Numbers

Consider a finite collection of open subsets $\left\{U_{i} \subset X\right\}_{i=1}^{n}$

- Let $L=\left\{U \subset X\right.$ open $\mid U=\cap_{i \in I} U_{i}$ for some $\left.I \subset[n]\right\}$

Mobius Numbers

Consider a finite collection of open subsets $\left\{U_{i} \subset X\right\}_{i=1}^{n}$

- Let $L=\left\{U \subset X\right.$ open $\mid U=\cap_{i \in I} U_{i}$ for some $\left.I \subset[n]\right\}$
- Then L is poset, ordered by reverse inclusion $(U \leq V \Longleftrightarrow U \supseteq V)$.

Mobius Numbers

Consider a finite collection of open subsets $\left\{U_{i} \subset X\right\}_{i=1}^{n}$

- Let $L=\left\{U \subset X\right.$ open $\mid U=\cap_{i \in I} U_{i}$ for some $\left.I \subset[n]\right\}$
- Then L is poset, ordered by reverse inclusion $(U \leq V \Longleftrightarrow U \supseteq V)$.
- L is a join lattice under intersection

Mobius Numbers

Consider a finite collection of open subsets $\left\{U_{i} \subset X\right\}_{i=1}^{n}$

- Let $L=\left\{U \subset X\right.$ open $\mid U=\cap_{i \in I} U_{i}$ for some $\left.I \subset[n]\right\}$
- Then L is poset, ordered by reverse inclusion $(U \leq V \Longleftrightarrow U \supseteq V)$.
- L is a join lattice under intersection

For $U \in L$, define $\mu(U)$ is to be coefficient of $\chi(U)$ in the inclusion-exclusion formula

Mobius Numbers

Consider a finite collection of open subsets $\left\{U_{i} \subset X\right\}_{i=1}^{n}$

- Let $L=\left\{U \subset X\right.$ open $\mid U=\cap_{i \in I} U_{i}$ for some $\left.I \subset[n]\right\}$
- Then L is poset, ordered by reverse inclusion $(U \leq V \Longleftrightarrow U \supseteq V)$.
- L is a join lattice under intersection

For $U \in L$, define $\mu(U)$ is to be coefficient of $\chi(U)$ in the inclusion-exclusion formula

- $\mu(U)$ is a combinatorial invariant of the subposet $L_{<U}:=$ $\{V \in L \mid V \supsetneq U\}$.

Mobius Numbers

Consider a finite collection of open subsets $\left\{U_{i} \subset X\right\}_{i=1}^{n}$

- Let $L=\left\{U \subset X\right.$ open $\mid U=\cap_{i \in I} U_{i}$ for some $\left.I \subset[n]\right\}$
- Then L is poset, ordered by reverse inclusion $(U \leq V \Longleftrightarrow U \supseteq V)$.
- L is a join lattice under intersection

For $U \in L$, define $\mu(U)$ is to be coefficient of $\chi(U)$ in the inclusion-exclusion formula

- $\mu(U)$ is a combinatorial invariant of the subposet $L_{<U}:=$ $\{V \in L \mid V \supsetneq U\}$.
- $\mu(U)$ is a topological invariant of its nerve $\mu(U)=\chi\left(N\left(L_{<U}\right)\right)-1$

Mobius Numbers

Consider a finite collection of open subsets $\left\{U_{i} \subset X\right\}_{i=1}^{n}$

- Let $L=\left\{U \subset X\right.$ open $\mid U=\cap_{i \in I} U_{i}$ for some $\left.I \subset[n]\right\}$
- Then L is poset, ordered by reverse inclusion $(U \leq V \Longleftrightarrow U \supseteq V)$.
- L is a join lattice under intersection

For $U \in L$, define $\mu(U)$ is to be coefficient of $\chi(U)$ in the inclusion-exclusion formula

- $\mu(U)$ is a combinatorial invariant of the subposet $L_{<U}:=$ $\{V \in L \mid V \supsetneq U\}$.
- $\mu(U)$ is a topological invariant of its nerve $\mu(U)=\chi\left(N\left(L_{<U}\right)\right)-1$
- Equivalently, $\mu(U)$ is a homological invariant of L

$$
\mu(U)=\sum_{i}(-1)^{i} \operatorname{dim} \operatorname{Ext}_{L}^{i}\left(\mathbb{Z}, \mathbb{Z}_{U}\right)
$$

Degenerate Inclusion Exclusion

- We can refine $\mu(U)$ to "mobius betti numbers"

$$
\mu^{i}(U)=\operatorname{dim} \tilde{H}^{i-1}\left(N\left(L_{<U}\right)\right)
$$

Degenerate Inclusion Exclusion

- We can refine $\mu(U)$ to "mobius betti numbers"

$$
\mu^{i}(U)=\operatorname{dim} \tilde{H}^{i-1}\left(N\left(L_{<U}\right)\right)
$$

- And we can incorporate these cohomology groups into a spectral sequence

Theorem (Mobius Mayer-Vietoris)

There is a spectral sequence $E_{2}^{p, q} \Longrightarrow H^{p+q}\left(\bigcup_{U \in L} U\right)$ with

$$
\bigoplus E_{2}^{p, q}=\bigoplus_{U \in L} \tilde{H}^{p-1}\left(N\left(L_{<U}\right), H^{q}(U)\right)
$$

Inclusion-Exclusion Backwards

- We've been computing the Euler Characteristic of the union from the iterated intersections.

Inclusion-Exclusion Backwards

- We've been computing the Euler Characteristic of the union from the iterated intersections.
- Can we go the other way?
- Can we compute $\chi\left(\cap_{i=1}^{n} A_{i}\right)$ from the Euler characteristics of unions?

Inclusion-Exclusion Backwards

- We've been computing the Euler Characteristic of the union from the iterated intersections.
- Can we go the other way?
- Can we compute $\chi\left(\cap_{i=1}^{n} A_{i}\right)$ from the Euler characteristics of unions?

When $n=2$ we already have $\chi(A \cap B)=\chi(A)+\chi(B)-\chi(A \cap B)$.

Inclusion-Exclusion Backwards

- We've been computing the Euler Characteristic of the union from the iterated intersections.
- Can we go the other way?
- Can we compute $\chi\left(\cap_{i=1}^{n} A_{i}\right)$ from the Euler characteristics of unions?

When $n=2$ we already have $\chi(A \cap B)=\chi(A)+\chi(B)-\chi(A \cap B)$.

$$
1+2-1=
$$

Inclusion-Exclusion Backwards

- We've been computing the Euler Characteristic of the union from the iterated intersections.
- Can we go the other way?
- Can we compute $\chi\left(\cap_{i=1}^{n} A_{i}\right)$ from the Euler characteristics of unions?

When $n=2$ we already have $\chi(A \cap B)=\chi(A)+\chi(B)-\chi(A \cap B)$.

$$
1+2-1=2
$$

Backwards inclusion exclusion $n=3$

$$
\begin{aligned}
& \chi(A)+\chi(B)+\chi(C)-\chi(A \cup B) \\
& -\chi(A \cup C)-\chi(B \cup C)+\chi(A \cup B \cup C)
\end{aligned}
$$

Backwards inclusion exclusion $n=3$

$$
\begin{aligned}
& \chi(A)+\chi(B)+\chi(C)-\chi(A \cup B) \\
& -\chi(A \cup C)-\chi(B \cup C)+\chi(A \cup B \cup C) \\
& =5+4+5-7-7-8+9
\end{aligned}
$$

Backwards inclusion exclusion $n=3$

$$
\begin{aligned}
& \chi(A)+\chi(B)+\chi(C)-\chi(A \cup B) \\
& -\chi(A \cup C)-\chi(B \cup C)+\chi(A \cup B \cup C) \\
& =5+4+5-7-7-8+9 \\
& =1 \\
& =\chi(A \cap B \cap C)
\end{aligned}
$$

Backwards Mayer-Vietoris

- It's easy to prove that backwards inclusion-exclusion works for sets: just take complements!
- But this doesn't "categorify" in an elementary way

Backwards Mayer-Vietoris

- It's easy to prove that backwards inclusion-exclusion works for sets: just take complements!
- But this doesn't "categorify" in an elementary way

Let Q be the poset formed by the finite unions of the U_{i} ordered by reverse inclusion. It is now a lattice under unions.

Theorem (T.)

There is a spectral sequence $E_{1}^{-p, q} \Longrightarrow H^{-p+q}\left(\cap_{i} U_{i}\right)$ with

$$
\bigoplus_{p, q} E_{1}^{-p, q}=\bigoplus_{p, q} \bigoplus_{U \in Q} \tilde{H}_{p-1}\left(N\left(Q_{>U}\right), H^{q}(U)\right)
$$

This is backwards Mayer-Vietoris (with mobius coefficients).

Configuration Space

- X is a Hausdorff topological space
- The ordered configuration space of n points in X is

$$
\operatorname{Conf}_{n}(X)=\left\{\left(x_{i}\right) \in X^{n} \mid x_{i} \neq x_{j} \text { for } i \neq j\right\}
$$

- Can visualize configuration space as n labelled points moving around in X, where the points are not allowed to collide.

Configuration Space

- X is a Hausdorff topological space
- The ordered configuration space of n points in X is

$$
\operatorname{Conf}_{n}(X)=\left\{\left(x_{i}\right) \in X^{n} \mid x_{i} \neq x_{j} \text { for } i \neq j\right\}
$$

- Can visualize configuration space as n labelled points moving around in X, where the points are not allowed to collide.
- Notice, $\operatorname{Conf}_{n}(X)$ is an open subset of X^{n} which is an intersection of the open subsets $U_{i j}=\left\{\left(x_{k}\right) \mid x_{i} \neq x_{j}\right\}=X^{n}-X^{n-1}$

Configuration Space

- X is a Hausdorff topological space
- The ordered configuration space of n points in X is

$$
\operatorname{Conf}_{n}(X)=\left\{\left(x_{i}\right) \in X^{n} \mid x_{i} \neq x_{j} \text { for } i \neq j\right\}
$$

- Can visualize configuration space as n labelled points moving around in X, where the points are not allowed to collide.
- Notice, $\operatorname{Conf}_{n}(X)$ is an open subset of X^{n} which is an intersection of the open subsets $U_{i j}=\left\{\left(x_{k}\right) \mid x_{i} \neq x_{j}\right\}=X^{n}-X^{n-1}$
- The lattice generated by $U_{i j}$ under intersections is the lattice of set partitions

Question:

What is the (co)homology of $\operatorname{Conf}_{n}(X)$? As an $\mathbf{S}_{\mathbf{n}}$ representation?

- Answer should involve the cohomology of X
- But $X \mapsto \operatorname{Conf}_{n}(X)$ does not preserve homotopy equivalences- this suggests we need more!
- When $n \gg 0$, we hope that $H^{i}\left(\operatorname{Conf}_{n}(X)\right)$ admits a uniform description.
- For manifolds, the work of Totaro/Cohen gives the main tool to answer this question, using knowledge about configurations in \mathbb{R}^{n}
- Using this work, Church established that the cohomology of configurations in $\operatorname{Conf}_{n}(M)$ satisfies rep stability.

A Variant of Backwards Mayer-Vietoris

There is a more useful version that uses $H^{i}(X, U)=H_{Z}^{i}(X)$ where $Z=U^{c}$ instead of U.

- By excision, these groups only depend on a neighborhood of Z in X.
- When Z is an orientable submanifold, $H_{Z}^{i}(X)=H^{i-\operatorname{dim} Z}(X)$.

Theorem (T.)

There is a spectral sequence $E_{1}^{p, q} \Longrightarrow H^{p+q}\left(\cap_{i} U_{i}\right)$ with

$$
\bigoplus_{p, q} E_{1}^{p, q}=\bigoplus_{U \in L^{\prime}} \tilde{H}_{p-2}\left(N((\hat{1}, U)), H^{q}(X, U)\right)
$$

This extends the tools of Totaro/Cohen to non-manifolds.

Rep Stability for Non Manifolds

We say that a point $p \in X$ is a roadblock if for $U \ni p$ a contractible neighborhood, $U-p$ is disconnected.

- Every point of a graph G is a roadblock
- $G \times \mathbb{R}^{1}$ has no roadblock points
- A wedge of two spaces has a roadblock point at the wedge
- Two spheres glued along an edge have no roadblocks

Rep Stability for Non Manifolds

We say that a point $p \in X$ is a roadblock if for $U \ni p$ a contractible neighborhood, $U-p$ is disconnected.

- Every point of a graph G is a roadblock
- $G \times \mathbb{R}^{1}$ has no roadblock points
- A wedge of two spaces has a roadblock point at the wedge
- Two spheres glued along an edge have no roadblocks

Theorem (T.)

Let X be a finite connected CW complex. If X has no roadblocks then

$$
n \mapsto H^{i}\left(\operatorname{Conf}_{n}(X), \mathbb{Q}\right)
$$

is representation stable: in particular its dimension eventually agrees with a polynomial in n.

Rep Stability for Non Manifolds

We say that a point $p \in X$ is a roadblock if for $U \ni p$ a contractible neighborhood, $U-p$ is disconnected.

- Every point of a graph G is a roadblock
- $G \times \mathbb{R}^{1}$ has no roadblock points
- A wedge of two spaces has a roadblock point at the wedge
- Two spheres glued along an edge have no roadblocks

Theorem (T.)

Let X be a finite connected CW complex. If X has no roadblocks then

$$
n \mapsto H^{i}\left(\operatorname{Conf}_{n}(X), \mathbb{Q}\right)
$$

is representation stable: in particular its dimension eventually agrees with a polynomial in n.

Extends to reasonable connected locally contractible closed subsets of \mathbb{R}^{n}. For fields $k \neq \mathbb{Q}$, the same criterion implies finite generation of FI modules

Other Directions, Other Arrangement Complements?

Given $U_{i} \subset X$ with $Z_{i}=X-U_{i}$, intersecting the U_{i} is the same as removing the union of the Z_{i}

$$
\bigcap_{i} U_{i}=X-\bigcup_{i} Z_{i}
$$

The spectral sequence from before gives a tool for computing the cohomology from $H_{Z_{i}}^{*}(X)$ and poset homology.

When X is a vector space and the Z_{i} are subspaces, it degenerates at E_{1} and we recover a formula for the cohomology due to Goresky and MacPherson.

Acknowledgements

Thank you for coming!

For More Info I

P. Tosteson

Lattice Spectral Sequences and Cohomology of Configuration Spaces. https://arxiv.org/abs/1612.06034

